Skip to main content
Log in

Modulation in growth, photosynthetic efficiency, activity of antioxidants and mineral ions by foliar application of glycinebetaine on pea (Pisum sativum L.) under salt stress

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

A pot experiment was carried out to explore the role of glycinebetaine (GB) as foliar spray foliar on two pea (Pisum sativum L.) varieties (Pea 09 and Meteor Fsd) under saline and non-saline conditions. Thirty-two-day-old plants were subjected to two levels 0 and 150 mM of NaCl stress. Salt treatment was applied in full strength Hoagland’s nutrient solution. Three levels 0, 5 and 10 mM of GB were applied as foliar treatment on 34-day-old pea plants. After 2 weeks of foliar treatment with GB data for various growth and physiochemical attributes were recorded. Rooting-medium applied salt (150 mM NaCl) stress decreased growth, photosynthesis, chlorophyll, chlorophyll fluorescence and soluble protein contents, while increasing the activities of enzymatic (POD and CAT) and non-enzymatic (ascorbic acid and total phenolics) antioxidant enzymes. Foliar application of GB decreased root and shoot Na+ under saline conditions, while increasing shoot dry matter, root length, root fresh weight, stomatal conductance (g s), contents of seed ascorbic acid, leaf phenolics, and root and shoot Ca2+ contents. Of three GB (0, 5, 10 mM) levels, 10 mM proved to be more effective in mitigating the adverse effects of salinity stress. Overall, variety Pea 09 showed better performance in comparison to those of var. Meteor Fsd under both normal and salinity stress conditions. GB-induced modulation of seed ascorbic acid, leaf phenolics, g s, and root Ca2+ values might have contributed to the increased plant biomass, reduction of oxidative stress, increased osmotic adjustment and better photosynthetic performance of pea plants under salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas SR, Ahmad SD, Sabir SMY, Shah AH (2014) Detection of drought tolerant sugarcane genotypes (Saccharum officinarum) using lipid peroxidation, antioxidant activity, glycine-betaine and proline contents. J Soil Sci Plant Nutr 14(1):233–243

    Google Scholar 

  • Ahmad P, Hakeem KR, Kumar A, Ashraf M, Akram NA (2012) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr J Biotechnol 11:2694–2703

    CAS  Google Scholar 

  • Akhter N, Akram NA, Shahbaz M (2007) Presowing seed treatments with glycinebetaine and mineral nutrients of wheat (Triticum aestivum L.) under saline conditions. Pak J Agric Sci 44(2):236–241

    Google Scholar 

  • Ali RM, Kaviani B, Masouleh A (2012) The effect of exogenous glycine betaine on yield of soybean [Glycine max (L.) Merr.] in two contrasting cultivars Pershing and DPX under soil salinity stress. Plant Omics, Southern Cross Publisher

  • Allen SK, Dobrenz AK, Schonhorst MH, Stoner JE (1985) Heritability of NaCl tolerance in germinating alfalfa seeds. Agron J 77:90–96

    Article  Google Scholar 

  • Arnon DT (1949) Copper enzyme in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Ashraf I, Pervez MA, Mand A, Ahmad R (2011) Effect of varying irrigation frequencies on growth, yield and quality of peas seed. J Agric Res 49(3):339–351

    Google Scholar 

  • Ashraf MA, Ashraf M, Shahbaz M (2012) Growth stage-based modulation in antioxidant defense system and proline accumulation in two hexaploid wheat (Triticum aestivum L.) cultivars differing in salinity tolerance. Flora 207(5):388–397

    Article  Google Scholar 

  • Basu PS, Sharma A, Sukumaran NP (1998) Changes in net photosynthetic rate and chlorophyll fluorescence in potato leaves induced by water stress. Photosynthetica 35:13–19

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ann Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brugnoli E, Bjorkman O (1992) Growth of cotton under continuous salinity stress influence on allocation pattern, stomatal and non stomatal components of photosynthesis and dissipation of excess light energy. Planta 187:335–347

    Article  PubMed  CAS  Google Scholar 

  • Chance B, Maehly A (1955) Assay of catalase and peroxidase. Methods Enzymol 2:764–817

    Article  Google Scholar 

  • Cha-Um S, Kirdmanee C (2010) Effect of glycinebetaine on proline, water use, and photosynthetic efficiencies, and growth of rice seedlings under salt stress. Turk J Agric For 34:517–527

    CAS  Google Scholar 

  • Cha-um S, Samphumphuang T, Kirdmanee C (2013) Glycinebetaine alleviates water deficit stress in indica rice using proline accumulation, photosynthetic efficiencies, growth performances and yield attributes. Aus J Crop Sci 7(2):213–218

    CAS  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance to abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  PubMed  CAS  Google Scholar 

  • Chen THH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    Article  PubMed  Google Scholar 

  • Chen S, Gollop N, Heuer B (2009) Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycinebetaine. J Exp Bot, erp075v1–erp075

  • Cramer GR, Nowak RS (1992) Supplemental manganese improves the relative growth, net assimilation and photosynthetic rates of salt-stressed barley. Physiol Plant 84(4):600–605

    Article  CAS  Google Scholar 

  • Cui XH, Fu-Shun H, Chen H, Chen J, Wang XC (2008) Expression of the Vicia faba VfPIP gene in Arabidopsis thaliana plants improves there drought resistance. J Plant Res 121:207–214

    Article  PubMed  CAS  Google Scholar 

  • De Pascale E, Ruggiero C, Barbieri G, Maggio A (2003a) Physiological responses of pepper to salinity and drought. J Am Soc Hortic Sci 128:48–54

    Google Scholar 

  • De Pascale S, Maggio A, Ruggiero C, Barbieri G (2003b) Growth, water relations, and ion content of field grown celery under saline irrigation (Apium graveolens L. var. dulce [Mill.] pers.). J Am Soc Hortic Sci 128:136–143

    Google Scholar 

  • Demiral T, Turkan I (2004) Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment. J Plant Physiol 161:1089–1100

    Article  PubMed  CAS  Google Scholar 

  • Gadallah MAA (1999) Effect of proline and glycinebetaine on Vicia faba responses to salt stress. Biol Plant 42:249–257

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Giridarakumar S, Matta Reddy A, Sudhakar C (2003) NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Morus alba L.) with contrasting salt tolerance. Plant Sci 165:1245–1251

    Article  Google Scholar 

  • Girija C, Smith BN, Swamy PM (2002) Interactive effects of sodium chloride and calcium chloride on the accumulation of proline and glycinebetaine in peanut (Arachis hypogaea L.). Environ Exp Bot 47:1–10

    Article  CAS  Google Scholar 

  • Grieve CM, Maas EM (1984) Betaine accumulation in salt stressed sorghum. Physiol Plant 61:167–171

    Article  CAS  Google Scholar 

  • Habib N, Ashraf M, Shahbaz M (2013) Effect of exogenously applied nitric oxide on some key physiological attributes of rice (Oryza sativa L.) plants under salt stress. Pak J Bot 45(5):1563–1569

    Google Scholar 

  • Hassine AB, Ghanem ME, Bouzid S, Lutts S (2008) An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress. J Exp Bot 59:1315–1326

    Article  PubMed  Google Scholar 

  • Heuer B (2003) Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Sci 165:693–699

    Article  CAS  Google Scholar 

  • Hoque MA, Okuma E, Nakamara Y, Shimoishi Y, Murata Y (2008) Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl induced damage in cultured tobacco cells. J Plant Physiol 165:813–824

    Article  PubMed  CAS  Google Scholar 

  • Hussein MM, El-Gereadly NHM, El-Desuki M (2006) Role of puterscine in resistance to salinity of pea plants (Pisum sativum L.). J Appl Sci Res 2:598–604

    Google Scholar 

  • Ibrahim M, Anjum A, Khaliq N, Iqbal M, Athar HR (2006) Four foliar applications of glycinebetaine did not alleviate adverse effects of salt stress on growth of sunflower. Pak J Bot 38(5):1561–1570

    Google Scholar 

  • Javaid A, Ghafoor Anwar R (2002) Evaluation of local and exotic pea (Pisum sativum) germplasm for vegetative and dry grain traits. Pak J Bot 34(4):419–427

    Google Scholar 

  • Julkenen-Titto R (1985) Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. Agric Food Chem 33:213–217

    Article  Google Scholar 

  • Kalaji HM, Govindje E, Bosa K, Koscielniak J, Zuk-Golaszewska K (2010) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot 73:64–72

    Article  Google Scholar 

  • Kanwal H, Ashraf M, Shahbaz M (2011) Assessment of salt tolerance of some newly developed and candidate wheat (Triticum aestivum L.) cultivars using gas exchange and chlorophyll fluorescence attributes. Pak J Bot 43(6):2693–2699

    CAS  Google Scholar 

  • Kanwal S, Ashraf M, Shahbaz M, Iqbal MY (2013) Influence of saline stress on growth, gas exchange, mineral nutrients and non-enzymatic antioxidatns in mungbean [(Vigna radiata (L.) Wilczek]. Pak J Bot 45(3):763–771

    CAS  Google Scholar 

  • Karabudak T, Bor M, Ozdemir F, Turkan I (2014) Glycine betaine protects tomato (Solanum lycopersicum) plants at low temperature by inducing fatty acid desaturase7 and lipoxygenase gene expression. Mol Biol Rep 41(3):1401–1410

    Article  PubMed  CAS  Google Scholar 

  • Kausar F, Shahbaz M (2013) Interactive effect of foliar application of nitric oxide (NO) and salinity on wheat (Triticum aestivum L.). Pak J Bot 45(SI):67–73

    Google Scholar 

  • Kausar F, Shahbaz M, Ashraf M (2013) Protective role of foliar-applied nitric oxide in wheat (Triticum aestivum L.) under saline stress. Turk J Bot 37(6):1155–1165

    Article  CAS  Google Scholar 

  • Kausar N, Nawaz K, Hussain K, Bhatti KH, Siddiqi EH, Tallat A (2014) Effect of exogenous applications of glycine betaine on growth and gaseous exchange attributes of two maize (Zea mays L.) cultivars under saline conditions. World Appl Sci J 29:1559–1565

    CAS  Google Scholar 

  • Kaya C, Sonmez O, Aydemir S, Dilkilitas M (2013) Mitigation effects of glycinebetaine on oxidative stress and some key growth parameters of maize exposed to salt stress. Turk J Agric 37:188–194

    CAS  Google Scholar 

  • Khan TN, Ramzan A, Jillani G, Mehmood T (2013) Morphological performance of peas (Pisum sativum) genotypes under rainfed conditions of potowar region. J Agric Res 51(1):51–60

    Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74

    Article  PubMed  CAS  Google Scholar 

  • Lopez CML, Takahashi H, Yamazaki S (2002) Plant water relations of kidney bean plants treated with NaCl and foliarly applied glycinebetaine. J Agron Crop Sci 188:73–80

    Article  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  PubMed  CAS  Google Scholar 

  • Makela P, Kontturi M, Pheu E, Somersalo S (1999) Photosynthetic response of drought and salt-stressed tomato and turnip rape plants to foliar-applied glycinebetaine. Physiol Plant 105:45–50

    Article  CAS  Google Scholar 

  • Makela P, Karkkainen J, Somersalo S (2000) Effect of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity. Biol Plant 43:471–475

    Article  CAS  Google Scholar 

  • Makhdum MI, Shababuddin MI (2006) Effects of different doses of glycine betaine and time of spray application on yield of cotton (Gossypium hirsutum L.). J Res (Science) 17(4):241–245

    Google Scholar 

  • McCue RF, Hanson AD (1990) Drought and salt tolerance: towards understanding and application. TIBTECH 8:358–362

    Article  CAS  Google Scholar 

  • Meek CR, Oosterhuis DM (1999) Effects of foliar application of glycinebetaine on fieldgrown cotton. In: Oosterhuis DM (ed) Proc. 1999 cotton research meeting and summaries of research in progress. University of Arkansas Agricultural Experiment Station Special, Report 193, pp 103–105

  • Meek C, Oosterhuis D, Gorham J (2003) Does foliar-applied glycinebetaine affect endogenous betaine levels and yield in cotton? Crop Manage. doi:10.1094/CM-2003-0804-02-RS(Online

    Google Scholar 

  • Moghaieb REA, Saneoka H, Fujita K (2004) Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritima. Plant Sci 166:1345–1349

    Article  CAS  Google Scholar 

  • Morales F, Abadia A, Gomez-Aparis J, Abadia J (1992) Effects of combined NaCl and CaCl2 salinity on photosynthetic parameters of barley grown in nutrient solution. Physiol Plant 86:419–426

    Article  CAS  Google Scholar 

  • Mukherjee SP, Choudhuri MA (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Mohanty PS, Hayashi H, Papageorgiou GC (1992) Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen evolving complex. FEBS Lett 296:187–189

    Article  PubMed  CAS  Google Scholar 

  • Navarro J, Flores M, Garrido PC, Martinez V (2006) Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chem 96:66–73

    Article  CAS  Google Scholar 

  • Nawaz K, Ashraf M (2010) Exogenous application of glycinebetaine modulates activities of antioxidants in maize plants subjected to salt stress. J Agron Crop 196:28–37

    Article  CAS  Google Scholar 

  • Nomura M, Hibino T, Takabe T, Sugiyama T, Yokota A, Miyake H, Takabe T (1998) Transgenically produced glycinebetaine protects ribulose 1,5-bisphosphate carboxylase/oxygenase from inactivation in Synechococcus sp. PCC7942 under salt stress. Plant Cell Physiol 39:425–432

    Article  CAS  Google Scholar 

  • Noreen Z, Ashraf M (2009) Assessment of variation in antioxidative defense system in salt- treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. J Plant Physiol 166:1764–1774

    Article  PubMed  CAS  Google Scholar 

  • Odjegba VJ (2013) Responses of Zea mays seedlings to salinity stress and exogenous nitrogen supply. Nat Sci 11(1):63–69

    Google Scholar 

  • Perveen S, Shahbaz M, Ashraf M (2010) Regulation in gas exchange and quantum yield of photosystem II (PSII) in salt stressed and non-stressed wheat plants raised from seed treated with triacontanol. Pak J Bot 42:3073–3081

    CAS  Google Scholar 

  • Perveen S, Shahbaz M, Ashraf M (2011) Modulation in activities of antioxidant enzymes in salt stressed and non-stressed wheat (Triticum aestivum L.) plants raised from seed treated with triacontanol. Pak J Bot 43(5):2463–2468

    CAS  Google Scholar 

  • Perveen S, Shahbaz M, Ashraf M (2012a) Is pre-sowing seed treatment with triacontanol effective in improving some physiological and biochemical attributes of wheat (Triticum aestivum L.) under salt stress? J Appl Bot Food Qual 85:41–48

    Google Scholar 

  • Perveen S, Shahbaz M, Ashraf M (2012b) Changes in mineral composition, uptake and use efficiency of salt stressed wheat (Triticum aestivum L.) plants raised from seed treated with triacontanol. Pak J Bot 44:27–35

    CAS  Google Scholar 

  • Perveen S, Shahbaz M, Ashraf M (2013) Influence of foliar-applied triacontanol on growth, gas exchange characteristics, and chlorophyll fluorescence at different growth stages in wheat under saline conditions. Photosynthetica 51(4):541–551

    Article  CAS  Google Scholar 

  • Perveen S, Shahbaz M, Ashraf M (2014) Triacontanol-induced changes in growth, yield, leaf water relations, antioxidative defense system and some key osmoprotectants in bread wheat (Triticum aestivum L.) under saline stress. Turk J Bot 38:896–913

    Article  Google Scholar 

  • Raza SH, Athar HR, Ashraf M (2006) Influence of exogenously applied glycinebetaine on the photosynthetic capacity of two differently adapted wheat cultivars under salt stress. Pak J Bot 38(2):341–351

    Google Scholar 

  • Raza SH, Athar HR, Ashraf M, Hameed A (2007) GB-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Env Exp Bot 60:368–376

    Article  CAS  Google Scholar 

  • Reddy KR, Henry WB, Seepaul R, Lokhande S, Gajanayake B, Brand D (2013) Exogenous application of glycinebetaine facilitates maize (Zea mays L) growth under water deficit conditions. Am J Exp Agric 3(1):1–13

    Article  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Rhodes DP, Rich J, Myers AC, Rueter CC, Jamieson GC (1987) Determination of betaines by fast atom bombardment mass spectrometry: identification of glycinebetaine deficient genotypes of Zea mays. Plant Physiol 84:781–788

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Robinson SP, Jones JP (1986) Accumulation of glycinebetaine in chloroplasts provides osmotic adjustment during salt stress. Aust J Plant Physiol 13:659–668

    Article  CAS  Google Scholar 

  • Rodriguez M, Canales E, Borras-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotecnologia Aplicada 22:1–10

    CAS  Google Scholar 

  • Sakamoto H, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88

    Article  PubMed  CAS  Google Scholar 

  • Sakr MT, El-Sarkassy NM, Fuller MP (2012) Osmoregulators proline and glycine betaine counteract salinity stress in canola. Agron Sus Dev 32(3):747–754

    Article  CAS  Google Scholar 

  • Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:237–249

    Article  Google Scholar 

  • Shahbaz M, Zia B (2011) Does exogenous application of glycinebetaine through rooting medium alter rice (Oryza sativa L.) mineral nutrient status under saline conditions? J Appl Bot Food Qual 84(1):54–60

    CAS  Google Scholar 

  • Shahbaz M, Masood Y, Perveen S, Ashraf M (2011) Is foliar-applied glycinebetaine effective in mitigating the adverse effects of drought stress on wheat (Triticum aestivum L.)? J Appl Bot Food Qual 84:192–199

    CAS  Google Scholar 

  • Shahbaz M, Ashraf M, Al-Qurainy F, Harris PJC (2012) Salt tolerance in selected vegetable crops. Crit Rev Plant Sci 31(4):303–320

    Article  CAS  Google Scholar 

  • Shahbaz M, Noreen N, Perveen S (2013) Triacontanol modulates photosynthesis and osmoprotectants in canola (Brassica napus L) under saline stress. J Plant Inter 8(4):250–259

    Google Scholar 

  • Shaheen HL, Shahbaz S, Ullah I, Iqbal MZ (2012) Morpho-physiological responses of cotton (Gossypium hirsutum L.) to salt stress. Int J Agric Biol 14:980–984

    Google Scholar 

  • Shahid MA, Pervez MA, Ashraf MY, Ayyub CM, Ashfaq M, Mattson NS (2011) Characterization of salt tolerant and salt sensitive pea (Pisum sativum L.) genotypes under saline regime. Pak J Life Soc Sci 9(2):145–152

    Google Scholar 

  • Shahid MA, Pervez MA, Balal RM, Abbas T, Ayyub CM, Mattson NS, Riaz A, Iqbal Z (2012) Screening of pea (Pisum sativum L.) genotypes for salt tolerance based on early growth stage attributes and leaf inorganic osmolytes. Aust J Crop Sci 6(9):1324–1331

    CAS  Google Scholar 

  • Snedecore GW, Cohran WG (1980) Statistical methods, 7th edn. The Iowa State University Press, Ames

    Google Scholar 

  • Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll ‘a’ fluorescence transients in plants and cyanobacteria. Photochem Photobiol 61:32–42

    Article  CAS  Google Scholar 

  • Subbarao GV, Wheeler RM, Levine LH, Stutte GW (2001) Glycinebetaine accumulation, ionic and water relations of red-beet at contrasting levels of sodium supply. J Plant Physiol 158:767–776

    Article  PubMed  CAS  Google Scholar 

  • Timasheff SN (1992) A physicochemical basis for the selection of osmolytes by nature. In: Somero CN, Osmond CB, Bolis CL (eds) Water and life: comparative analysis of water relationships at the organismic, cellular and molecular levels. Springer, Berlin, pp 71–84

    Google Scholar 

  • Varshney KA, Gangwar LP, Goel N (1988) Choline and betaine accumulation in Trifolium alexandrinum L. during salt stress. Egyptian J Bot 31:81–86

    CAS  Google Scholar 

  • Wakeel A, Asif AR, Pitann B, Schubert S (2011) Proteome analysis of sugar beet (Beta vulgaris L.) elucidates constitutive adaptation during the first phase of salt stress. J Plant Physiol 168:519–526

    Article  PubMed  CAS  Google Scholar 

  • Wilson S (2001) Frost management in cool climate vineyards. Final Report to Grape and Wine Research & Development Corporation, Australia

    Google Scholar 

  • Wyn Jones RG, Gorham J, McDonnell E (1984) Organic and inorganic solute contents as selection criteria for salt tolerance in the Triticeae. In: Staples R, Toennissen GH (eds) Salinity tolerance in plants: strategies for crop improvement. Wiley, New York, pp 189–203

    Google Scholar 

  • Yang X, Lu C (2005) Photosynthesis is improved by exogenous glycinebetaine in salt stressed maize plants. Physiol Plant 124(3):343–352

    Article  CAS  Google Scholar 

  • Yildiztugay E, Ozfidan-Konakci C, Kucukoduk M, Duran Y (2014) Variations in osmotic adjustment and water relations of Sphaerophysa kotschyana: glycine betaine, proline and choline accumulation in response to salinity. Bot Stud 55:6

    Article  Google Scholar 

  • Zaidi MA, Amjad N, Shah S (2013) A study for the development of a vegetable planter for optimum stand establishment. Pak J Agric Sci 50(2):273–277

    Google Scholar 

  • Zeid IM (2009) Trehalose as osmoprotectant for maize under salinity-induced stress. Res J Agric Biol Sci 5:613–622

    CAS  Google Scholar 

  • Zhu MY, Ahn SJ, Matsumoto H (2003) Inhibition of growth and development of root border cells by Al. Physiol Plant 117:359–367

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Shahbaz.

Additional information

Communicated by L.A.Kleczkowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nusrat, N., Shahbaz, M. & Perveen, S. Modulation in growth, photosynthetic efficiency, activity of antioxidants and mineral ions by foliar application of glycinebetaine on pea (Pisum sativum L.) under salt stress. Acta Physiol Plant 36, 2985–2998 (2014). https://doi.org/10.1007/s11738-014-1670-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1670-1

Keywords

Navigation