Skip to main content
Log in

Comparative Analysis of Direct Cold Atmospheric Plasma Treatment vs. Plasma Activated Water for the Deactivation of Omicron Variant of SARS-CoV-2

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Cold atmospheric plasma (CAP) has gaining potential, and very effective to curb or deactivate the various microorganisms such as bacteria and virus. Lately, the major outbreak SARS-CoV-2 infection has affected humanity largely with added complexity of its ability to mutate to variants such as Omicron. We have earlier shown the effectiveness of CAP on SARS-CoV-2 spike protein and, in this study, we have evaluated the effectiveness of CAP to deactivate Omicron. We studied the ability of the binding of Angiotensin converting Enzyme Protein (ACE2) protein to the plasma treated spike S1-S2 protein and spike Receptor binding domain (RBD) using Cold atmospheric plasma direct treatment as well as Plasma activated water (PAW). Results have shown the binding efficiency of Omicron spike protein to ACE2 decrease with increase in treatment time with both direct treatment and PAW as evidenced using spectroscopic techniques. The reactive species (RONS) play a major role in the efficient deactivation of the binding of ACE2 to the Omicron spike protein. Correspondingly, the comparison between the efficiency between direct treatment and PAW has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Adedoyin OB, Soykan E (2020) Covid-19 pandemic and online learning: the challenges and opportunities. Interact Learn Environ 3:1–3

    Google Scholar 

  2. World Health Organization (2023) Geneva, Swizerland. https://www.who.int/health-topics/coronavirus#tab=tab_1. Accessed 21 June 2023

  3. Burki T (2021) Understanding variants of SARS-CoV-2. The Lancet 397(10273):462

    Article  CAS  Google Scholar 

  4. Li M, Lou F, Fan H (2021) SARS-CoV-2 variants of concern Delta: a great challenge to prevention and control of COVID-19. Signal Transduct Target Therapy 6:1–3

    Google Scholar 

  5. Li M, Lou F, Fan H (2022) SARS-CoV-2 variant Omicron: currently the most complete escapee from neutralization by antibodies and vaccines. Signal Transduct Target Therapy 7:1–3

    Google Scholar 

  6. World Health Organization (2020) Infection prevention and control during health care when novel coronavirus ( nCoV) infection is suspected: interim guidance. World Health Organization

  7. Loizou C, Kniazeva V, Apostolou T, Kornev A, Kostevitch S, Roslyakov E, Constantinou C, Hadjihannas L (2022) Effect of cold atmospheric plasma on SARS-CoV-2 inactivation: a pilot study in the hospital environment. COVID 2:1396–1404

    Article  Google Scholar 

  8. Chen Z, Garcia G Jr, Arumugaswami V, Wirz RE (2020) Cold atmospheric plasma for SARS-CoV-2 inactivation. Phys Fluids 32:111702

    Article  CAS  Google Scholar 

  9. Ganesh Subramanian PS, Harsha R, Manju DK, Hemanth M, Lakshminarayana R, Anand MS, Dasappa S (2019) Characterization of plasma activated water for medical applications. Adv Mater Lett 10:919–923

    Article  Google Scholar 

  10. Bisag A, Isabelli P, Laurita R, Bucci C, Capelli F, Dirani G, Gherardi M, Laghi G, Paglianti A, Sambri V, Colombo V (2020) Cold atmospheric plasma inactivation of aerosolized microdroplets containing bacteria and purified SARS-CoV‐2 RNA to contrast airborne indoor transmission. Plasma Processes Polym 17:2000154

    Article  CAS  Google Scholar 

  11. Bisag A, Isabelli P, Laghi G, Laurita R, Dirani G, Taddei F, Bucci C, Capelli F, Gherardi M, Paglianti A, Sambri V (2022) Cold atmospheric plasma decontamination of SARS-CoV‐2 bioaerosols. Plasma Processes Polym 19:e2100133

    Article  CAS  Google Scholar 

  12. Jin T, Xu Y, Dai C, Zhou X, Xu Q, Wu Z (2021) Cold atmospheric plasma: A non-negligible strategy for viral RNA inactivation to prevent SARS-CoV-2 environmental transmission AIP advances 11

  13. Kaushik N, Mitra S, Baek EJ, Nguyen LN, Bhartiya P, Kim JH, Choi EH, Kaushik NK (2023) The inactivation and destruction of viruses by reactive oxygen species generated through physical and cold atmospheric plasma techniques: current status and perspectives. J Adv Res 43:59–71

    Article  CAS  PubMed  Google Scholar 

  14. Khanikar RR, Kalita M, Kalita P, Kashyap B, Das S, Khan MR, Bailung H, Sankaranarayanan K (2022) Cold atmospheric pressure plasma for attenuation of SARS-CoV-2 spike protein binding to ACE2 protein and the RNA deactivation. RSC Adv 12:9466–9472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Filipić A, Gutierrez-Aguirre I, Primc G, Mozetič M, Dobnik D (2020) Cold plasma, a new hope in the field of virus inactivation. Trends Biotechnol 38:1278–1291

    Article  PubMed  PubMed Central  Google Scholar 

  16. Qin H, Qiu H, He ST, Hong B, Liu K, Lou F, Li M, Hu P, Kong X, Song Y, Liu Y (2022) Efficient disinfection of SARS-CoV-2-like coronavirus, pseudotyped SARS-CoV-2 and other coronaviruses using cold plasma induces spike protein damage. J Hazard Mater 430:128414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen Z, Garcia G, Arumugaswami V, Wirz RE (2020) Cold atmospheric plasma for SARS-CoV-2 inactivation. Phys Fluids 1:32

    Google Scholar 

  18. Cortázar OD, Megía-Macías A, Moreno S, Brun A, Gómez-Casado E (2022) Vulnerability of SARS-CoV-2 and PR8 H1N1 virus to cold atmospheric plasma activated media. Sci Rep 12:263

    Article  PubMed  PubMed Central  Google Scholar 

  19. Han I, Mumtaz S, Choi EH (2022) Nonthermal biocompatible plasma inactivation of coronavirus SARS-CoV-2: prospects for future antiviral applications. Viruses 14:2685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Adamovich I, Agarwal S, Ahedo E, Alves LL, Baalrud S, Babaeva N, Bogaerts A, Bourdon A, Bruggeman PJ, Canal C, Choi EH (2022) The 2022 plasma roadmap: low temperature plasma science and technology. J Phys D 55:373001

    Article  CAS  Google Scholar 

  21. Tang X, Staack D (2019) Bioinspired mechanical device generates plasma in water via cavitation. Sci Adv 5:eaau7765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guo L, Yao Z, Yang L, Zhang H, Qi Y, Gou L, Xi W, Liu D, Zhang L, Cheng Y, Wang X (2021) Plasma-activated water: an alternative disinfectant for S protein inactivation to prevent SARS-CoV-2 infection. Chem Eng J 421:127742

    Article  CAS  PubMed  Google Scholar 

  23. Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A (2008) Applied plasma medicine. Plasma Processes Polym 5:503–533

    Article  CAS  Google Scholar 

  24. Von Woedtke T, Schmidt A, Bekeschus S, Wende K, Weltmann KD (2019) Plasma medicine: a field of applied redox biology. In Vivo 33:1011–1026

    Article  Google Scholar 

  25. Nehra V, Kumar A, Dwivedi HK (2008) Atmospheric non-thermal plasma sources. Int J Eng 2:53–68

    Google Scholar 

  26. Feizollahi E, Misra NN, Roopesh MS (2021) Factors influencing the antimicrobial efficacy of dielectric barrier discharge (DBD) atmospheric cold plasma (ACP) in food processing applications. Crit Rev Food Sci Nutr 61:666–689

    Article  CAS  PubMed  Google Scholar 

  27. Khanikar RR, Boruah PJ, Bailung H (2020) Development and optical characterization of an atmospheric pressure non-thermal plasma jet for superhydrophobic surface fabrication. Plasma Res Express 2:045002

    Article  CAS  Google Scholar 

  28. Bharati AJ, Khanikar RR, Bailung H, Sankaranarayanan K (2023) Investigating the effect of atmospheric plasma on protein fibrinogen: spectroscopic and biophysical analysis. Plasma Processes Polym e2300127

  29. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581:215–220

    Article  CAS  PubMed  Google Scholar 

  30. Journal of Experimental Botany (2006) 57(8):1711–1718. https://doi.org/10.1093/jxb/erj180

  31. Hydrogen peroxide induce modifications of human extracellular superoxide dismutase that results in enzyme inhibition (2013) Redox Biology 1(1):24–31

  32. Imaging and Profiling of proteins under oxidative conditions in cells and tissues by hydrogen-peroxide-responsive labeling (2020) J Am Chem Soc 142(37):15711–15721

    Article  Google Scholar 

  33. Bruggeman P, Leys C (2009) Non-thermal plasmas in and in contact with liquids. J Phys D 42:053001

    Article  Google Scholar 

  34. Yang X, Zhang C, Li Q, Cheng JH (2023) Physicochemical properties of plasma-activated water and its control effects on the quality of strawberries. Molecules 28:2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hoeben WF, Van Ooij PP, Schram DC, Huiskamp T, Pemen AJ, Lukeš PJ (2019) On the possibilities of straightforward characterization of plasma activated water. Plasma Chem Plasma Process 39:597–626

    Article  CAS  Google Scholar 

  36. Li Z, Zhang X, Qi M, Zhao X, Qu Z, Wang X, Li W, Xu D (2023) Assessment of microbial species inactivation and purification of sewage by a gas–liquid diaphragm discharge plasma. J Appl Phys 134(9)

Download references

Acknowledgements

Author KS thanks DST-IASST, Guwahati for the In-house project grant, SERB, Govt. of India for the SRG grant (SRG/2020/001894 dt. 11.11.2020) and ICMR Project grant (File No. 17 × (3)/Ad-hoc/19/2022-ITR dt. 23.12.2022). Author Reema thanks UGC, Govt. of India and DB thanks IASST DST, Govt. of India for the support for the Junior Research Fellowship. Reema and DB also thanks AcSIR for Ph.D registration.

Funding

In-house project grant, SERB, Govt. of India for the SRG grant (SRG/2020/001894 dt. 11.11.2020) and ICMR Project grant (File No. 17 × (3)/Ad-hoc/19/2022-ITR dt. 23.12.2022).

Author information

Authors and Affiliations

Authors

Contributions

Reema and DB performed the experiments and HB, KS designed the experiments and all the authors corrected the manuscript.

Corresponding author

Correspondence to Kamatchi Sankaranarayanan.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reema, Basumatary, D., Bailung, H. et al. Comparative Analysis of Direct Cold Atmospheric Plasma Treatment vs. Plasma Activated Water for the Deactivation of Omicron Variant of SARS-CoV-2. Plasma Chem Plasma Process 44, 1019–1030 (2024). https://doi.org/10.1007/s11090-024-10449-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-024-10449-9

Keywords

Navigation