Skip to main content

Advertisement

Log in

Investigation of Physicochemical Properties of Plasma Activated Water and its Bactericidal Efficacy

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Presently, the world is using different types of disinfectants for various applications such as disinfecting instrument surfaces in the medical field, sanitizers in airplanes, wash-rooms, etc. These disinfectants carry various harmful chemicals that harm our ecosystem. Hence in search of more eco-friendly disinfectants, our research leads us to explore plasma activated water (PAW). PAW can be produced with the help of plasma interaction with water. This interaction changes the physicochemical properties of water and makes it reactive to kill pathogens. PAW can be used for a wide variety of applications such as food preservation, fast germination, sterilization agents, etc. In the present work, PAW has been formed using non-thermal plasma and different gas or gas mixture as plasma forming gas. Its physicochemical properties have been studied to identify pH value, oxidation reduction potential, and chemical species formed after plasma interaction with a water surface. Further, the study has been carried out to determine the disinfectant ability of PAW for two types of pathogens named Staphylococcus aureus and Pseudomonas aeruginosa. Different bactericidal methods have been adopted to confirm the results. SEM, fluorescence microscopy, and release of nucleic acids and proteins from raptured cell membrane of pathogens clearly show bactericidal efficacy of PAW. The important finding of the present work is the effective killing of pathogens by PAW in a short span of interaction time (≤ 10 s). The PAW has a strong possibility of using it as a disinfectant to kill a wide variety of pathogens and micro-organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Finlay BB (1999) Bacterial disease in diverse hosts. Cell 96(3):315–318

    Article  CAS  PubMed  Google Scholar 

  2. Chan GJ, Lee AC, Baqui AH, Tan J, Black RE (2013) Risk of early-onset neonatal infection with maternal infection or colonization: a global systematic review and meta-analysis. PLoS Med 10(8):e1001502

    Article  PubMed  PubMed Central  Google Scholar 

  3. Govaert M, Smet C, Verheyen D, Walsh JL, Van Impe JF (2019) Combined effect of cold atmospheric plasma and hydrogen peroxide treatment on mature Listeria monocytogenes and Salmonella Typhimurium biofilms. Front Microbiol 10:2674

    Article  PubMed  PubMed Central  Google Scholar 

  4. Freeda Blessie R, Varadharaju N, John Kennedy Z, Ganapathy S, Shridar B (2019) Effect of non-thermal plasma treatment on carrot slices. J Pharmacogn Phytochem 8(4):80–83

    Google Scholar 

  5. Lee J-Y, Kim K-H, Park S-Y, Yoon S-Y, Kim G-H, Lee Y-M, Rhyu I-C, Seol Y-J (2019) The bactericidal effect of an atmospheric-pressure plasma jet on Porphyromonas gingivalis biofilms on sandblasted and acid-etched titanium discs. J Periodontal Implant Sci 49(5):319–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hajhoseini A, Sharifan A, Yousefi H (2019) Effects of atmospheric cold plasma on microbial growth of Listeria innocua and Staphylococcus aureus in ready-to-eat fish products. Iranian Journal of Fisheries Sciences

  7. Nema SK, Vishal Jain, Adam Sanghariyat, Subroto Mukherjee, Nirav Jamnapara (2019) An apparatus for water treatment to activate water using atmospheric pressure hybrid plasma system. Indian Patent application no. 201621043562.

  8. ten Bosch L, Köhler R, Ortmann R, Wieneke S, Viöl W (2017) Insecticidal effects of plasma treated water. Int J Environ Res Public Health 14(12):1460

    Article  PubMed Central  Google Scholar 

  9. Thirumdas R, Kothakota A, Annapure U, Siliveru K, Blundell R, Gatt R, Valdramidis VP (2018) Plasma activated water (PAW): chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci Technol 77:21–31

    Article  CAS  Google Scholar 

  10. Tschang C-YT, Thoma M (2019) In vitro comparison of direct plasma treatment and plasma activated water on Escherichia coli using a surface micro-discharge. J Phys D Appl Phys 53(5):055201

    Article  Google Scholar 

  11. Hongzhuan Z, Ying T, Xia S, Jinsong G, Zhenhua Z, Beiyu J, Yanyan C, Lulu L, Jue Z, Bing Y (2019) Preparation of the inactivated Newcastle disease vaccine by plasma activated water and evaluation of its protection efficacy. Applied microbiology and biotechnology:1–11

  12. Wu H, Sun P, Feng H, Zhou H, Wang R, Liang Y, Lu J, Zhu W, Zhang J, Fang J (2012) Reactive oxygen species in a non-thermal plasma microjet and water system: generation, conversion, and contributions to bacteria inactivation—an analysis by electron spin resonance spectroscopy. Plasma Processes Polym 9(4):417–424

    Article  CAS  Google Scholar 

  13. Laurita R, Barbieri D, Gherardi M, Colombo V, Lukes P (2015) Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma. Clin Plasma Med 3(2):53–61

    Article  Google Scholar 

  14. Van Gils C, Hofmann S, Boekema B, Brandenburg R, Bruggeman P (2013) Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet. J Phys D Appl Phys 46(17):175203

    Article  Google Scholar 

  15. Shen J, Tian Y, Li Y, Ma R, Zhang Q, Zhang J, Fang J (2016) Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures. Sci Rep 6:28505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Naïtali M, Kamgang-Youbi G, Herry J-M, Bellon-Fontaine M-N, Brisset J-L (2010) Combined effects of long-living chemical species during microbial inactivation using atmospheric plasma-treated water. Appl Environ Microbiol 76(22):7662–7664

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang Q, Liang Y, Feng H, Ma R, Tian Y, Zhang J, Fang J (2013) A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage. Appl Phys Lett 102(20):203701

    Article  Google Scholar 

  18. Lukes P, Dolezalova E, Sisrova I, Clupek M (2014) Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Sci Technol 23(1):015019

    Article  CAS  Google Scholar 

  19. Traylor MJ, Pavlovich MJ, Karim S, Hait P, Sakiyama Y, Clark DS, Graves DB (2011) Long-term antibacterial efficacy of air plasma-activated water. J Phys D Appl Phys 44(47):472001

    Article  Google Scholar 

  20. Li Y, Pan J, Ye G, Zhang Q, Wang J, Zhang J, Fang J (2017) In vitro studies of the antimicrobial effect of non-thermal plasma-activated water as a novel mouthwash. Eur J Oral Sci 125(6):463–470

    Article  CAS  PubMed  Google Scholar 

  21. Sun P, Wu H, Bai N, Zhou H, Wang R, Feng H, Zhu W, Zhang J, Fang J (2012) Inactivation of Bacillus subtilis spores in water by a direct-current, cold atmospheric-pressure air plasma microjet. Plasma Process Polym 9(2):157–164

    Article  Google Scholar 

  22. Pan J, Li Y, Liu C, Tian Y, Yu S, Wang K, Zhang J, Fang J (2017) Investigation of cold atmospheric plasma-activated water for the dental unit waterline system contamination and safety evaluation in vitro. Plasma Chem Plasma Process 37(4):1091–1103

    Article  CAS  Google Scholar 

  23. Kamgang-Youbi G, Herry J-M, Brisset J-L, Bellon-Fontaine M-N, Doubla A, Naïtali M (2008) Impact on disinfection efficiency of cell load and of planktonic/adherent/detached state: case of Hafnia alvei inactivation by plasma activated water. Appl Microbiol Biotechnol 81(3):449–457

    Article  CAS  PubMed  Google Scholar 

  24. Kamgang-Youbi G, Herry JM, Meylheuc T, Brisset JL, Bellon-Fontaine MN, Doubla A, Naïtali M (2009) Microbial inactivation using plasma-activated water obtained by gliding electric discharges. Lett Appl Microbiol 48(1):13–18

    Article  CAS  PubMed  Google Scholar 

  25. Kaushik NK, Ghimire B, Li Y, Adhikari M, Veerana M, Kaushik N, Jha N, Adhikari B, Lee S-J, Masur K (2018) Biological and medical applications of plasma-activated media, water and solutions. Biol Chem 400(1):39–62

    Article  PubMed  Google Scholar 

  26. Ercan UK, Wang H, Ji H, Fridman G, Brooks AD, Joshi SG (2013) Nonequilibrium plasma-activated antimicrobial solutions are broad-spectrum and retain their efficacies for extended period of time. Plasma Process Polym 10(6):544–555

    Article  CAS  Google Scholar 

  27. Oehmigen K, Hähnel M, Brandenburg R, Wilke C, Weltmann KD, Von Woedtke T (2010) The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process Polym 7(3–4):250–257

    Article  CAS  Google Scholar 

  28. Tian Y, Ma R, Zhang Q, Feng H, Liang Y, Zhang J, Fang J (2015) Assessment of the physicochemical properties and biological effects of water activated by non-thermal plasma above and beneath the water surface. Plasma Process Polym 12(5):439–449

    Article  CAS  Google Scholar 

  29. Zhang Q, Ma R, Tian Y, Su B, Wang K, Yu S, Zhang J, Fang J (2016) Sterilization efficiency of a novel electrochemical disinfectant against Staphylococcus aureus. Environ Sci Technol 50(6):3184–3192

    Article  CAS  PubMed  Google Scholar 

  30. Burlica R, Grim R, Shih KY, Balkwill D, Locke B (2010) Bacteria inactivation using low power pulsed gliding arc discharges with water spray. Plasma Process Polym 7(8):640–649

    Article  CAS  Google Scholar 

  31. Xiang Q, Kang C, Niu L, Zhao D, Li K, Bai Y (2018) Antibacterial activity and a membrane damage mechanism of plasma-activated water against Pseudomonas deceptionensis CM2. LWT 96:395–401

    Article  CAS  Google Scholar 

  32. Schnabel U, Niquet R, Schmidt C, Stachowiak J, Schlüter O, Andrasch M, Ehlbeck J (2016) Antimicrobial efficiency of non-thermal atmospheric pressure plasma processed water (PPW) against agricultural relevant bacteria suspensions. Int J Environ Agric Res 2:212–224

    Google Scholar 

  33. Bergendahl JA, Stevens L (2005) Oxidation reduction potential as a measure of disinfection effectiveness for chlorination of wastewater. Environ Prog 24(2):214–222

    Article  CAS  Google Scholar 

  34. Suslow TV (2004) Oxidation-reduction potential (ORP) for water disinfection monitoring, control, and documentation.

  35. Hauser AR, Rello J (2012) Severe infections caused by Pseudomonas aeruginosa, vol 7. Springer, Berlin

    Google Scholar 

  36. Kluytmans J, Van Belkum A, Verbrugh H (1997) Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 10(3):505–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cole AM, Tahk S, Oren A, Yoshioka D, Kim Y-H, Park A, Ganz T (2001) Determinants of Staphylococcus aureus nasal carriage. Clin Diagn Lab Immunol 8(6):1064–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fang Z, Xie X, Li J, Yang H, Qiu Y, Kuffel E (2009) Comparison of surface modification of polypropylene film by filamentary DBD at atmospheric pressure and homogeneous DBD at medium pressure in air. J Phys D Appl Phys 42(8):085204

    Article  Google Scholar 

  39. Baron S (1996) Classification--Medical Microbiology. University of Texas Medical Branch at Galveston,

  40. Kimler A (1962) Evaluation of mediums for identification of Staphylococcus aureus. Am J Clin Pathol 37(6):593–596

    Article  CAS  PubMed  Google Scholar 

  41. Zhang X, Xu D, Zhu C, Lundaa T, Scherr KE (2012) Isolation and identification of biosurfactant producing and crude oil degrading Pseudomonas aeruginosa strains. Chem Eng J 209:138–146

    Article  CAS  Google Scholar 

  42. Garrity M, Bell A, Lilburn T (2005) Order IX Pseudomonadales Orla-Jensen 1921, 270 AL. Bergey’s Manual of Systematic Bacteriology Part two The Proteobacteria, 2nd edn Springer, USA:384–402

  43. Kushkevych I (2019) Isolation and Purification of Sulfate-Reducing Bacteria. In: Microorganisms. IntechOpen,

  44. Li Q, Chen X, Jiang Y, Jiang C (2016) Cultural, physiological, and biochemical identification of actinobacteria. Actinobacteria-Basics and Biotechnological Applications:87–111

  45. Association APH (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  46. Aboubakr HA, Williams P, Gangal U, Youssef MM, El-Sohaimy SA, Bruggeman PJ, Goyal SM (2015) Virucidal effect of cold atmospheric gaseous plasma on feline calicivirus, a surrogate for human norovirus. Appl Environ Microbiol 81(11):3612–3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Murtey MD, Ramasamy P (2016) Sample preparations for scanning electron microscopy–life sciences. In: Modern electron microscopy in physical and life sciences. IntechOpen,

  48. Manchester KL (1996) Use of UV methods for measurement of protein and nucleic acid concentrations. Biotechniques 20(6):968–970

    Article  CAS  PubMed  Google Scholar 

  49. Musini A, Giri A (2019) Investigation of Mode of Action of Anti Bacterial Activity of Salacia Oblonga Extract Against Drug Resistant Pathogen. Brazilian Archives of Biology and Technology 62

  50. Paderog MJV, Suarez AFL, Sabido EM, Low ZJ, Saludes JP, Dalisay DS (2020) Anthracycline shunt metabolites from Philippine marine sediment-derived streptomyces destroy cell membrane integrity of multidrug-resistant Staphylococcus aureus. Front Microbiol 11:743

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wilfinger WW, Mackey K, Chomczynski P (1997) Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. Biotechniques 22(3):474–481

    Article  CAS  PubMed  Google Scholar 

  52. Groves WE, Davis FC Jr, Sells BH (1968) Spectrophotometric determination of microgram quantities of protein without nucleic acid interference. Anal Biochem 22(2):195–210

    Article  CAS  PubMed  Google Scholar 

  53. Stiefel P, Schmidt-Emrich S, Maniura-Weber K, Ren Q (2015) Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol 15(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  54. Coling D, Kachar B (1998) Principles and application of fluorescence microscopy. Curr Protoc Mol Biol 44(1):14.10.11-14.10.11

    Article  Google Scholar 

  55. Salgado P, Frontela JL, Vidal G (2020) Optimization of fenton technology for recalcitrant compounds and bacteria inactivation. Catalysts 10(12):1483

    Article  CAS  Google Scholar 

  56. Tomova I, Stoilova-Disheva M, Lazarkevich I, Vasileva-Tonkova E (2015) Antimicrobial activity and resistance to heavy metals and antibiotics of heterotrophic bacteria isolated from sediment and soil samples collected from two Antarctic islands. Front Life Sci 8(4):348–357

    Article  CAS  Google Scholar 

  57. Sivachandiran L, Khacef A (2017) Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Adv 7(4):1822–1832

    Article  CAS  Google Scholar 

  58. Lu P, Boehm D, Bourke P, Cullen PJ (2017) Achieving reactive species specificity within plasma-activated water through selective generation using air spark and glow discharges. Plasma Process Polym 14(8):1600207

    Article  Google Scholar 

  59. Ma R, Wang G, Tian Y, Wang K, Zhang J, Fang J (2015) Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. J Hazard Mater 300:643–651

    Article  CAS  PubMed  Google Scholar 

  60. Vlad I-E, Anghel SD (2017) Time stability of water activated by different on-liquid atmospheric pressure plasmas. J Electrostat 87:284–292

    Article  CAS  Google Scholar 

  61. Machala Z, Tarabova B, Hensel K, Spetlikova E, Sikurova L, Lukes P (2013) Formation of ROS and RNS in water electro-s prayed through transient spark discharge in air and their bactericidal effects. Plasma Process Polym 10(7):649–659

    Article  CAS  Google Scholar 

  62. Jablonowski H, von Woedtke T (2015) Research on plasma medicine-relevant plasma–liquid interaction: what happened in the past five years? Clin Plasma Med 3(2):42–52

    Article  Google Scholar 

  63. Oehmigen K, Winter J, Hähnel M, Wilke C, Brandenburg R, Weltmann KD, von Woedtke T (2011) Estimation of possible mechanisms of Escherichia coli inactivation by plasma treated sodium chloride solution. Plasma Process Polym 8(10):904–913

    Article  CAS  Google Scholar 

  64. Chen B-M, Wang Z-H, Li S-X, Wang G-X, Song H-X, Wang X-N (2004) Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Sci 167(3):635–643

    Article  CAS  Google Scholar 

  65. Aslam M, Huffaker RC (1989) Role of nitrate and nitrite in the induction of nitrite reductase in leaves of barley seedlings. Plant Physiol 91(3):1152–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Laboratory NRCCoHSit (1980) Prudent practices for handling hazardous chemicals in laboratories. National Academies,

  67. Xiang Q, Wang W, Zhao D, Niu L, Li K, Bai Y (2019) Synergistic inactivation of Escherichia coli O157: H7 by plasma-activated water and mild heat. Food Control 106:106741

    Article  CAS  Google Scholar 

  68. Xu Y, Tian Y, Ma R, Liu Q, Zhang J (2016) Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chem 197:436–444

    Article  CAS  PubMed  Google Scholar 

  69. Bălan GG, Roşca I, Ursu E-L, Doroftei F, Bostănaru A-C, Hnatiuc E, Năstasă V, Şandru V, Ştefănescu G, Trifan A (2018) Plasma-activated water: a new and effective alternative for duodenoscope reprocessing. Infect Drug Resist 11:727

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wyatt PJ (1970) Cell wall thickness, size distribution, refractive index ratio and dry weight content of living bacteria (Stapylococcus aureus). Nature 226(5242):277–279

    Article  CAS  PubMed  Google Scholar 

  71. Mai-Prochnow A, Clauson M, Hong J, Murphy AB (2016) Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci Rep 6:38610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the department of atomic energy (Government of India) graduate fellowship scheme (DGFS). Authors sincerely thank Dr. Vishal N. Jain, Mr. Chirayu Patil, and Mr. Adam Sanghariyat, Dr. Nirav I. Jamnapara, and Mr. Akshay Vaid for providing constant support and useful suggestions during this work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Vikas Rathore and Divyesh Patel. The first draft of the manuscript was written by Vikas Rathore and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vikas Rathore.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32781 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathore, V., Patel, D., Butani, S. et al. Investigation of Physicochemical Properties of Plasma Activated Water and its Bactericidal Efficacy. Plasma Chem Plasma Process 41, 871–902 (2021). https://doi.org/10.1007/s11090-021-10161-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-021-10161-y

Keywords

Navigation