Skip to main content
Log in

Hysteresis online identification approach for smart material actuators with different input signals and external disturbances

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this article, we present a fraction-order polynomial-modified Prandtl–Ishlinskii (FPMPI) and online infinite impulse response (OIIR) integrated model to describe the rate/load/temperature hystereses for smart material actuators. Hysteresis loops exhibit dynamic, asymmetric and saturate phenomena under different input rates, external loads and surrounding temperatures. It is difficult to apply a comprehensive model to accurately capture the hysteresis variation. The Hammerstein-based hysteresis offline identification study is conducted. It is found that the rate/load/temperature-dependent hysteresis cannot be described well via the offline approach, due to the system uncertainty and time-varying dynamics. By formulating the hysteresis modeling as an adaptive filtering problem, the OIIR filter and FPMPI integrated model is utilized for the rate/load/temperature-dependent hysteresis identification. Comparison of the online and offline identification results shows that the hysteresis online identification accuracies improve at least one order of magnitude, and two orders for some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Zhang, H.T., Hu, B., Li, L., Chen, Z., Wu, D., Xu, B., Huang, X., Gu, G., Yuan, Y.: Distributed hammerstein modeling for cross-coupling effect of multiaxis piezoelectric micropositioning stages. IEEE/ASME Trans. Mechatron. 23(6), 2794 (2018)

    Article  Google Scholar 

  2. Yi, S., Yang, B., Meng, G.: Microvibration isolation by adaptive feedforward control with asymmetric hysteresis compensation. Mech. Syst. Signal Process. 114, 644 (2019)

    Article  Google Scholar 

  3. Al Janaideh, M., Al Saaideh, M., Rakotondrabe, M.: On hysteresis modeling of a piezoelectric precise positioning system under variable temperature. Mech. Syst. Signal Process. 145, 106880 (2020)

    Article  Google Scholar 

  4. Meng, A., Yang, J., Li, M., Jiang, S.: Research on hysteresis compensation control of gmm. Nonlinear Dyn. 83(1–2), 161 (2016)

    Article  MathSciNet  Google Scholar 

  5. Li, Z., Shan, J.: Modeling and inverse compensation for coupled hysteresis in piezo-actuated fabry-perot spectrometer. IEEE/ASME Trans. Mechatron. 22(4), 1903 (2017)

    Article  Google Scholar 

  6. Fleming, A.J., Yong, Y.K.: An ultrathin monolithic xy nanopositioning stage constructed from a single sheet of piezoelectric material. IEEE/ASME Trans. Mechatron. 22(6), 2611 (2017)

    Article  Google Scholar 

  7. Al Janaideh, M., Rakotondrabe, M.: Precision motion control of a piezoelectric cantilever positioning system with rate-dependent hysteresis nonlinearities. Nonlinear Dyn. 65, 1–21 (2021)

    Google Scholar 

  8. Li, Z., Shan, J., Gabbert, U.: Inverse compensation of hysteresis using krasnoselskii-pokrovskii model. IEEE/ASME Trans. Mechatron. 23(2), 966 (2018)

    Article  Google Scholar 

  9. Fang, L., Wang, J., Zhang, Q.: Identification of extended hammerstein systems with hysteresis-type input nonlinearities described by preisach model. Nonlinear Dyn. 79(2), 1257 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rakotondrabe, M.: Multivariable classical prandtl-ishlinskii hysteresis modeling and compensation and sensorless control of a nonlinear 2-dof piezoactuator. Nonlinear Dyn. 89(1), 481 (2017)

    Article  MATH  Google Scholar 

  11. Qin, Y., Tian, Y., Zhang, D., Shirinzadeh, B., Fatikow, S.: A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications. IEEE/ASME Trans. Mechatron. 18(3), 981 (2013)

    Article  Google Scholar 

  12. Yi, S., Yang, B., Meng, G.: Ill-conditioned dynamic hysteresis compensation for a low-frequency magnetostrictive vibration shaker. Nonlinear Dyn. 96(1), 535 (2019)

    Article  MATH  Google Scholar 

  13. Al Janaideh, M., Aljanaideh, O.: Further results on open-loop compensation of rate-dependent hysteresis in a magnetostrictive actuator with the prandtl-ishlinskii model. Mech. Syst. Signal Process. 104, 835 (2018)

    Article  Google Scholar 

  14. Drinčić, B., Tan, X., Bernstein, D.S.: Why are some hysteresis loops shaped like a butterfly? Automatica 47(12), 2658 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Xiao, S., Li, Y.: Modeling and high dynamic compensating the rate-dependent hysteresis of piezoelectric actuators via a novel modified inverse preisach model. IEEE Trans. Control Syst. Technol. 21(5), 1549 (2013)

    Article  Google Scholar 

  16. Aljanaideh, O., Al Janaideh, M., Rakheja, S., Su, C.Y.: Compensation of rate-dependent hysteresis nonlinearities in a magnetostrictive actuator using an inverse prandtl-ishlinskii model. Smart Mater. Struct. 22(2), 025027 (2013)

    Article  Google Scholar 

  17. Aljanaideh, O., Rakheja, S., Su, C.Y.: Experimental characterization and modeling of rate-dependent asymmetric hysteresis of magnetostrictive actuators. Smart Mater. Struct. 23(3), 035002 (2014)

    Article  Google Scholar 

  18. Wong, P.K., Xu, Q., Vong, C.M., Wong, H.C.: Rate-dependent hysteresis modeling and control of a piezostage using online support vector machine and relevance vector machine. IEEE Trans. Indus. Electron. 59(4), 1988 (2011)

    Article  Google Scholar 

  19. Zhang, D., Jia, M., Liu, Y., Ren, Z., Koh, C.S.: Comprehensive improvement of temperature-dependent jiles-atherton model utilizing variable model parameters. IEEE Trans. Magnet. 54(3), 1 (2017)

    Google Scholar 

  20. Li, P., Yan, F., Ge, C., Wang, X., Xu, L., Guo, J., Li, P.: A simple fuzzy system for modelling of both rate-independent and rate-dependent hysteresis in piezoelectric actuators. Mech. Syst. Signal Process. 36(1), 182 (2013)

    Article  Google Scholar 

  21. Tan, X., Baras, J.S.: Modeling and control of hysteresis in magnetostrictive actuators. Automatica 40(9), 1469 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, X., Tan, Y., Su, M., Xie, Y.: Neural networks based identification and compensation of rate-dependent hysteresis in piezoelectric actuators. Phys. B: Condensed Matter 405(12), 2687 (2010)

    Article  Google Scholar 

  23. Davino, D., Giustiniani, A., Visone, C.: Design and test of a stress-dependent compensator for magnetostrictive actuators. IEEE Trans. Magnet. 46(2), 646 (2010)

    Article  Google Scholar 

  24. Zhang, Z., Mao, J., Zhou, K.: Experimental characterization and modeling of stress-dependent hysteresis of a giant magnetostrictive actuator. Sci. China Technol. Sci. 56(3), 656 (2013)

    Article  Google Scholar 

  25. Zhan, Y.S., Lin, C.H.: A constitutive model of coupled magneto-thermo-mechanical hysteresis behavior for giant magnetostrictive materials. Mech. Mater. 148, 103477 (2020)

    Article  Google Scholar 

  26. Valadkhan, S., Morris, K., Shum, A.: A new load-dependent hysteresis model for magnetostrictive materials. Smart Mater. Struct. 19(12), 125003 (2010)

    Article  Google Scholar 

  27. Nouicer, A., Nouicer, E., Mahtali, M., Feliachi, M.: A neural network modeling of stress behavior in nonlinear magnetostrictive materials. J. Superconductivity Novel Magnet. 26(5), 1489 (2013)

  28. Li, Z., Zhang, X., Gu, G.Y., Chen, X., Su, C.Y.: A comprehensive dynamic model for magnetostrictive actuators considering different input frequencies with mechanical loads. IEEE Trans. Indus. Inf. 12(3), 980 (2016)

  29. Hsu, J.T., Ngo, K.D.: A hammerstein-based dynamic model for hysteresis phenomenon. IEEE Trans. Power Electron. 12(3), 406 (1997)

  30. Köhler, R., Rinderknecht, S.: A phenomenological approach to temperature dependent piezo stack actuator modeling. Sensors Actuat. A: Phys. 200, 123 (2013)

    Article  Google Scholar 

  31. Wang, T.Z., Zhou, Y.H.: Nonlinear dynamic model with multi-fields coupling effects for giant magnetostrictive actuators. Int. J. Solids Struct. 50(19), 2970 (2013)

    Article  Google Scholar 

  32. Bhadriraju, B., Narasingam, A., Kwon, J.S.I.: Machine learning-based adaptive model identification of systems: Application to a chemical process. Chem. Eng. Res. Des. 152, 372 (2019)

    Article  Google Scholar 

  33. Yang, C., Jiang, Y., He, W., Na, J., Li, Z., Xu, B.: Adaptive parameter estimation and control design for robot manipulators with finite-time convergence. IEEE Trans. Indus. Electron. 65(10), 8112 (2018)

    Article  Google Scholar 

  34. Su, L., Huang, X., Song, M.I., LaFave, J.M.: Structures. Elsevier, Amsterdam (2020)

    Google Scholar 

  35. Lu, W., Tang, B., Ji, K., Lu, K., Wang, D., Yu, Z.: A new load adaptive identification method based on an improved sliding mode observer for pmsm position servo system. IEEE Trans. Power Electron. 36(3), 3211 (2020)

    Article  Google Scholar 

  36. Paulo, S.D., et al.: Adaptive filtering: algorithms and practical implementation. Int. Ser. Eng. Computer Sci. 87, 23–50 (2008)

    MATH  Google Scholar 

  37. Gorbet, R., Wang, D.W., Morris, K.A.: in Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146), vol. 3 (IEEE, 1998), vol. 3, pp. 2161–2167

Download references

Acknowledgements

The work is supported by Shanghai Sailing Program (20YF1417400), Postdoctoral Science Foundation of China (2021M692022), National Nature Science Foundation of China Fund (61973207), Shanghai Rising-Star Program (20QA1403900), National Nature Science Foundation of Shanghai Fund (21ZR1423000) and the State Key Laboratory of MCMS-NUAA Fund (MCMS-E-0320G01), for which the authors are most grateful. Thanks Profs. Bintang Yang and Limin Zhu a lot for supplying the magnetostrictive and piezoelectric devices, respectively. The authors declare that we have no conflict of interest and comply with ethical standards. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Zhang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, S., Zhang, Q., Xu, L. et al. Hysteresis online identification approach for smart material actuators with different input signals and external disturbances. Nonlinear Dyn 110, 2557–2572 (2022). https://doi.org/10.1007/s11071-022-07677-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07677-z

Keywords

Navigation