Skip to main content
Log in

Global finite-time set stabilization of spacecraft attitude with disturbances using second-order sliding mode control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 21 February 2022

This article has been updated

Abstract

The performance of attitude stabilization control algorithms for rigid spacecraft can be limited by disturbances. In this paper, the global finite-time attitude stabilization problem with disturbances is investigated and handled by constructing a second-order sliding mode controller. Firstly, a virtual controller based on set stabilization idea is constructed to globally finite-time stabilize the system. Then, a relay polynomial second-order sliding mode controller is constructed to guarantee that the tracking error toward the virtual controller will converge to zero in finite-time. Finite-time Lyapunov theory is applied to support the proof and stability analysis. The global finite-time stability holds even with bounded disturbances. The effectiveness and feasibility of the controller are illustrated by the numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The authors declare that all other data supporting the findings of this study are available within the article. Source data for figures are provided with the paper.

Change history

References

  1. Joshi, S., Kelkar, A., Wen, J.: Robust attitude stabilization of spacecraft using nonlinear quaternion feedback. IEEE Trans. Autom. Control 40(10), 1800–1803 (1995). https://doi.org/10.1109/9.467669

    Article  MathSciNet  MATH  Google Scholar 

  2. Byrnes, C.I., Isidori, A.: On the attitude stabilization of rigid spacecraft. Automatica 27(1), 87–95 (1991). https://doi.org/10.1016/0005-1098(91)90008-P

    Article  MathSciNet  MATH  Google Scholar 

  3. Hu, Q., Li, B., Zhang, Y.: Robust attitude control design for spacecraft under assigned velocity and control constraints. ISA Trans. 52(4), 480–493 (2013). https://doi.org/10.1016/j.isatra.2013.03.003

    Article  Google Scholar 

  4. Wen, T.Y., Kreutz-Delgado, K.: The attitude control problem. IEEE Trans. Autom. Control 36(10), 1148–1162 (1991). https://doi.org/10.1109/9.90228

    Article  MathSciNet  MATH  Google Scholar 

  5. Show, L.L., Juang, J.C., Lin, C.T., Jan, Y.W.: Spacecraft robust attitude tracking design: PID control approach. In: American Control Conference, pp. 1360–1365 (2002)

  6. Sari, N.N., Jahanshahi, H., Fakoor, M.: Adaptive fuzzy PID control strategy for spacecraft attitude control. Int. J. Fuzzy Syst. 21(3), 769–781 (2019). https://doi.org/10.1007/s40815-018-0576-2

    Article  MathSciNet  Google Scholar 

  7. Liu, Y., Zhang, T., Song, J., Liang, B.: Adaptive spacecraft attitude tracking controller design based on similar skew-symmetric structure. Chin. J. Aeronaut. 23(2), 227–234 (2010). https://doi.org/10.1016/S1000-9361(09)60209-0

    Article  Google Scholar 

  8. Sun, L., Zheng, Z.: Disturbance-observer-based robust backstepping attitude stabilization of spacecraft under input saturation and measurement uncertainty. IEEE Trans. Ind. Electron. 64(10), 7994–8002 (2017). https://doi.org/10.1109/TIE.2017.2694349

    Article  Google Scholar 

  9. Qiao, J., Li, X., Xu, J.: A composite disturbance observer and \(h_{\infty }\) control scheme for flexible spacecraft with measurement delay and input delay. Chin. J. Aeronaut. 32(6), 1472–1480 (2019). https://doi.org/10.1016/j.cja.2018.10.013

    Article  Google Scholar 

  10. Wu, S., Wen, S.: Robust h-infinity output feedback control for attitude stabilization of a flexible spacecraft. Nonlinear Dyn. 84(1), 405–412 (2016). https://doi.org/10.1007/s11071-016-2624-5

    Article  MATH  Google Scholar 

  11. Luo, W., Chu, Y.-C., Ling, K.-V.: Inverse optimal adaptive control for attitude tracking of spacecraft. IEEE Trans. Autom. Control 50(11), 1639–1654 (2005). https://doi.org/10.1109/TAC.2005.858694

    Article  MathSciNet  MATH  Google Scholar 

  12. Horri, N., Palmer, P., Roberts, M.: Gain-scheduled inverse optimal satellite attitude control. IEEE Trans. Aerosp. Electron. Syst. 48(3), 2437–2457 (2012). https://doi.org/10.1109/TAES.2012.6237602

    Article  Google Scholar 

  13. Dwyer, T.A., III., Sira-Ramirez, H.: Variable-structure control of spacecraft attitude maneuvers. J. Guid. Control. Dyn. 11(3), 262–270 (1988). https://doi.org/10.2514/3.20303

    Article  MATH  Google Scholar 

  14. Xia, Y., Zhu, Z., Fu, M., Wang, S.: Attitude tracking of rigid spacecraft with bounded disturbances. IEEE Trans. Ind. Electron. 58(2), 647–659 (2010). https://doi.org/10.1109/TIE.2010.2046611

    Article  Google Scholar 

  15. Hu, Q., Xiao, L., Wang, C.: Adaptive fault-tolerant attitude tracking control for spacecraft with time varying inertia uncertainties. Chin. J. Aeronaut. 32(3), 674–687 (2019). https://doi.org/10.1016/j.cja.2018.12.015

    Article  Google Scholar 

  16. Seo, D., Akella, M.R.: High-performance spacecraft adaptive attitude-tracking control through attracting-manifold design. J. Guid. Control. Dyn. 31(4), 884–891 (2008). https://doi.org/10.2514/1.33308

    Article  Google Scholar 

  17. Bhat, S.P., Bernstein, D.S.: Finite-time stability of homogeneous systems. In: Proceedings of the American Control Conference, vol. 4, pp. 2513–2514 (1997)

  18. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control. Optim. 38(3), 751–766 (2000). https://doi.org/10.1137/S0363012997321358

    Article  MathSciNet  MATH  Google Scholar 

  19. Du, H., Li, S.: Finite-time attitude stabilization for a spacecraft using homogeneous method. J. Guid. Control. Dyn. 35(3), 740–748 (2012). https://doi.org/10.2514/1.56262

    Article  Google Scholar 

  20. Zou, A., Kumar, K., de Ruiter, A.: Finite-time spacecraft attitude control under input magnitude and rate saturation. Nonlinear Dyn. 99(3), 2201–2217 (2019). https://doi.org/10.1007/s11071-019-05388-6

    Article  Google Scholar 

  21. Jiang, B., Li, C., Ma, G.: Finite-time output feedback attitude control for spacecraft using “adding a power integrator’’ technique. Aerosp. Sci. Technol. 66, 342–354 (2017). https://doi.org/10.1016/j.ast.2017.03.026

    Article  Google Scholar 

  22. Zuo, A., Kumar, K.: Finite-time attitude control for rigid spacecraft subject to actuator saturation. Nonlinear Dyn. 96(2), 1017–1035 (2019). https://doi.org/10.1007/s11071-019-04836-7

    Article  MATH  Google Scholar 

  23. Yao, Q.: Robust finite-time control design for attitude stabilization of spacecraft under measurement uncertainties. Adv. Space Res. 68(8), 3159–3175 (2021). https://doi.org/10.1016/j.asr.2021.06.017

    Article  Google Scholar 

  24. Hu, Q., Jiang, B.: Continuous finite-time attitude control for rigid spacecraft based on angular velocity observer. IEEE Trans. Aerosp. Electron. Syst. 53(3), 1082–1092 (2018). https://doi.org/10.1109/TAES.2017.2773340

    Article  MathSciNet  Google Scholar 

  25. Jin, E., Sun, Z.: Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerosp. Sci. Technol. 12(4), 324–330 (2008). https://doi.org/10.1016/j.ast.2007.08.001

    Article  MATH  Google Scholar 

  26. Hu, Q., Li, B., Zhang, A.: Robust finite-time control allocation in spacecraft attitude stabilization under actuator misalignment. Nonlinear Dyn. 73(1–2), 53–71 (2013). https://doi.org/10.1007/s11071-013-0766-2

    Article  MathSciNet  MATH  Google Scholar 

  27. Huo, X., Hu, Q., Xiao, B.: Finite-time fault tolerant attitude stabilization control for rigid spacecraft. ISA Trans. 53(2), 241–250 (2014). https://doi.org/10.1016/j.isatra.2013.11.017

    Article  Google Scholar 

  28. Guo, B., Chen, Y.: Adaptive fast sliding mode fault tolerant control integrated with disturbance observer for spacecraft attitude stabilization system. ISA Trans. 94, 1–9 (2019). https://doi.org/10.1016/j.isatra.2019.04.014

    Article  Google Scholar 

  29. Cao, L., Xiao, B., Golestani, M.: Robust fixed-time attitude stabilization control of flexible spacecraft with actuator uncertainty. Nonlinear Dyn. 100, 3 (2020). https://doi.org/10.1007/s11071-020-05596-5

    Article  Google Scholar 

  30. Hu, Q., Niu, G.: Attitude output feedback control for rigid spacecraft with finite-time convergence. ISA Trans. 70, 173–186 (2017). https://doi.org/10.1016/j.isatra.2017.07.023

    Article  Google Scholar 

  31. Li, B., Qin, K., Xiao, B., Yang, Y.: Finite-time extended state observer based fault tolerant output feedback control for attitude stabilization. ISA Trans. 91, 11–20 (2018). https://doi.org/10.1016/j.isatra.2019.01.039

    Article  Google Scholar 

  32. Shao, S., Zong, Q., Tian, B., Wang, F.: Finite-time sliding mode attitude control for rigid spacecraft without angular velocity measurement. J. Franklin Inst. 354(12), 4656–4674 (2017). https://doi.org/10.1016/j.jfranklin.2017.04.020

    Article  MathSciNet  MATH  Google Scholar 

  33. Jiang, B., Hu, Q., Friswell, M.: Fixed-time attitude control for rigid spacecraft with actuator saturation and faults. IET Control Theory Appl. 24(5), 1892–1898 (2016). https://doi.org/10.1109/TCST.2016.2519838

    Article  Google Scholar 

  34. Chen, Q., Xie, S., Sun, M., He, X.: Adaptive nonsingular fixed time attitude stabilization of uncertain spacecraft. IEEE Trans. Aerosp. Electron. Syst. 54(6), 2937–2950 (2018). https://doi.org/10.1109/TAES.2018.2832998

    Article  Google Scholar 

  35. Zhu, Z., Xia, Y., Fu, M.: Adaptive sliding mode control for attitude stabilization with actuator saturation. IEEE Trans. Ind. Electron. 58(10), 4898–4907 (2011). https://doi.org/10.1109/TIE.2011.2107719

  36. Esmaeilzadeh, S., Golestani, M., Mobayen, S.: Chattering-free fault-tolerant attitude control with fast fixed-time convergence for flexible spacecraft. Int. J. Control Autom. Syst. 19(2), 767–776 (2020). https://doi.org/10.1007/s12555-020-0043-3

    Article  Google Scholar 

  37. Tiwari, P.M., Janardhanan, S.U., Nabi, M.U.: Rigid spacecraft attitude control using adaptive integral second order sliding mode. Aerosp. Sci. Technol. 42, 50–57 (2015). https://doi.org/10.1016/j.ast.2014.11.017

    Article  Google Scholar 

  38. Tiwari, P.M., Janardhanan, S.U., Nabi, M.U.: Attitude control using higher order sliding mode. Aerosp. Sci. Technol. 54, 108–113 (2016). https://doi.org/10.1016/j.ast.2016.04.012

    Article  Google Scholar 

  39. Lin, Y., Sontag, E.D., Yuan, W.: Recent results on Lyapunov-theoretic techniques for nonlinear stability. In: Proceedings of the 1994 American Control Conference, vol. 2, pp. 1771–1775 (1994)

  40. Rouche, N., Habets, P., Laloy, M.: Stability Theory by Liapunov’s Direct Method. Springer, New York (1977)

    Book  Google Scholar 

  41. Bhat, S.P., Bernstein, D.S.: A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon. Syst. Control Lett. 39(1), 63–70 (2000). https://doi.org/10.1016/S0167-6911(99)00090-0

    Article  MathSciNet  MATH  Google Scholar 

  42. Angeli, D.: Almost global stabilisation of the inverted pendulum via continuous state feedback. Automatica 37, 1103–1108 (2001). https://doi.org/10.1016/S0005-1098(01)00064-4

    Article  MathSciNet  MATH  Google Scholar 

  43. Tiwari, P., Janardhanan, S., un-Nabi, M.: Spacecraft anti-unwinding attitude control using second-order sliding mode. Asian J. Control 20(1), 455–468 (2018). https://doi.org/10.1002/asjc.1601

  44. Hashemi, S., Pariz, N., Sani, S.: Observer-based adaptive hybrid feedback for robust global attitude stabilization of a rigid body. IEEE Trans. Aerosp. Electron. Syst. 57(3), 1919–1929 (2021). https://doi.org/10.1109/TAES.2021.3050665

    Article  Google Scholar 

  45. Li, S., Ding, S., Li, Q.: Global set stabilisation of the spacecraft attitude using finite-time control technique. Int. J. Control 82(5), 822–836 (2009). https://doi.org/10.1080/00207170802342818

    Article  MathSciNet  MATH  Google Scholar 

  46. Liao, X.: Mathematical Theory and Application of Stability. Company of Center China Normal University, Wuhan, China (1988)

    Google Scholar 

  47. Ding, S., Li, S., Zheng, W.X.: Nonsmooth stabilization of a class of nonlinear cascaded systems. Automatica 48(10), 2597–2606 (2012). https://doi.org/10.1016/j.automatica.2012.06.060

    Article  MathSciNet  MATH  Google Scholar 

  48. Qian, C., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Autom. Control 46(7), 1061–1079 (2001). https://doi.org/10.1109/9.935058

    Article  MathSciNet  MATH  Google Scholar 

  49. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  50. Fragopoulos, D., Innocenti, M.: Stability considerations in quaternion attitude control using discontinuous Lyapunov functions. IEE Proc Control Theory Appl. 151(3), 253–258 (2004). https://doi.org/10.1049/ip-cta:20040311

  51. Kane, T.R., Likins, P.W., Levinson, D.A.: Spacecraft dynamics. AIAA J. 21(6), 928–928 (1983). https://doi.org/10.1115/1.3167078

    Article  Google Scholar 

  52. Cao, L., Xiao, B., Golestani, M., Ran, D.: Faster fixed-time control of flexible spacecraft attitude stabilization. IEEE Trans. Ind. Inf. 16(2), 1281–1290 (2020). https://doi.org/10.1109/TII.2019.2949588

    Article  Google Scholar 

  53. Pisacane, V.L.: Fundamentals of Space Systems. Oxford University Press, Pisacane and Robert C. Moore, New York (1994)

    Google Scholar 

  54. Ding, S., Li, S.: Second-order sliding mode controller design subject to mismatched term. Automatica 77, 388–392 (2017). https://doi.org/10.1016/j.automatica.2016.07.038

Download references

Acknowledgements

The work was supported in part by the National Natural Science Foundation of China under Grant (No. 62103102, 61973081, and 62173221), in part by Natural Science Foundation of Jiangsu under Grants (No. BK202210213), in part by China Postdoctoral Science Foundation (No. 2021M70077), in part by Jiangsu Postdoctoral Research Funding Program (No. 2021K009A).

Funding

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled Global Finite-Time Set Stabilization of Spacecraft Attitude with Disturbances using Second-Order Sliding Mode Control.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuo Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Wang, Z. & Li, S. Global finite-time set stabilization of spacecraft attitude with disturbances using second-order sliding mode control. Nonlinear Dyn 108, 1305–1318 (2022). https://doi.org/10.1007/s11071-022-07245-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07245-5

Keywords

Navigation