Skip to main content

Advertisement

Log in

Sonic Hedgehog Signaling Pathway: A Role in Pain Processing

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Pain, as one of the most prevalent clinical symptoms, is a complex physiological and psychological activity. Long-term severe pain can become unbearable to the body. However, existing treatments do not provide satisfactory results. Therefore, new mechanisms and therapeutic targets need to be urgently explored for pain management. The Sonic hedgehog (Shh) signaling pathway is crucial in embryonic development, cell differentiation and proliferation, and nervous system regulation. Here, we review the recent studies on the Shh signaling pathway and its action in multiple pain-related diseases. The Shh signaling pathway is dysregulated under various pain conditions, such as pancreatic cancer pain, bone cancer pain, chronic post-thoracotomy pain, pain caused by degenerative lumbar disc disease, and toothache. Further studies on the Shh signaling pathway may provide new therapeutic options for pain patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Raja SN et al (2020) The revised International Association for the study of Pain definition of pain: concepts, challenges, and compromises. Pain 161(9):1976–1982. https://doi.org/10.1097/j.pain.0000000000001939

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hylands-White N, Duarte RV, Raphael JH (2017) An overview of treatment approaches for chronic pain management. Rheumatol Int 37(1):29–42. https://doi.org/10.1007/s00296-016-3481-8

    Article  CAS  PubMed  Google Scholar 

  3. Dale R, Stacey B (2016) Multimodal treatment of chronic pain. Med Clin N Am 100(1):55–64. https://doi.org/10.1016/j.mcna.2015.08.012

    Article  PubMed  Google Scholar 

  4. Stein C (2018) New concepts in opioid analgesia. Expert Opin Investig Drugs 27(10):765–775. https://doi.org/10.1080/13543784.2018.1516204

    Article  CAS  PubMed  Google Scholar 

  5. Nasrallah I, Golden JA (2001) Brain, eye, and face defects as a result of ectopic localization of sonic hedgehog protein in the developing rostral neural tube. Teratology 64(2):107–113. https://doi.org/10.1002/tera.1052

    Article  CAS  PubMed  Google Scholar 

  6. Choy SW, Cheng SH (2012) Hedgehog signaling. Vitam Horm 88:1–23. https://doi.org/10.1016/B978-0-12-394622-5.00001-8

    Article  CAS  PubMed  Google Scholar 

  7. Moreau N, Boucher Y (2020) Hedging against neuropathic pain: role of hedgehog signaling in pathological nerve Healing. Int J Mol Sci. https://doi.org/10.3390/ijms21239115

    Article  PubMed  PubMed Central  Google Scholar 

  8. Moreau N et al (2016) Early alterations of hedgehog signaling pathway in vascular endothelial cells after peripheral nerve injury elicit blood-nerve barrier disruption, nerve inflammation, and neuropathic pain development. Pain 157(4):827–839. https://doi.org/10.1097/j.pain.0000000000000444

    Article  CAS  PubMed  Google Scholar 

  9. Sasai N, Toriyama M, Kondo T (2019) Hedgehog signal and genetic disorders. Front Genet 10:1103. https://doi.org/10.3389/fgene.2019.01103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287(5785):795–801. https://doi.org/10.1038/287795a0

    Article  CAS  PubMed  Google Scholar 

  11. Varjosalo M, Taipale J (2008) Hedgehog: functions and mechanisms. Genes Dev 22(18):2454–2472. https://doi.org/10.1101/gad.1693608

    Article  CAS  PubMed  Google Scholar 

  12. Echelard Y et al (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75(7):1417–1430. https://doi.org/10.1016/0092-8674(93)90627-3

    Article  CAS  PubMed  Google Scholar 

  13. Salaritabar A et al (2019) Targeting hedgehog signaling pathway: paving the road for cancer therapy. Pharmacol Res 141:466–480. https://doi.org/10.1016/j.phrs.2019.01.014

    Article  CAS  PubMed  Google Scholar 

  14. Petrova R, Joyner AL (2014) Roles for hedgehog signaling in adult organ homeostasis and repair. Development 141(18):3445–3457. https://doi.org/10.1242/dev.083691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chiang C et al (1996) Cyclopia and defective axial patterning in mice lacking sonic hedgehog gene function. Nature 383(6599):407–413. https://doi.org/10.1038/383407a0

    Article  CAS  PubMed  Google Scholar 

  16. Rohatgi R, Milenkovic L, Scott MP (2007) Patched1 regulates hedgehog signaling at the primary cilium. Science 317(5836):372–376. https://doi.org/10.1126/science.1139740

    Article  CAS  PubMed  Google Scholar 

  17. Briscoe J, Therond PP (2013) The mechanisms of hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14(7):416–429. https://doi.org/10.1038/nrm3598

    Article  CAS  PubMed  Google Scholar 

  18. Ingham PW, Nakano Y, Seger C (2011) Mechanisms and functions of hedgehog signalling across the metazoa. Nat Rev Genet 12(6):393–406. https://doi.org/10.1038/nrg2984

    Article  CAS  PubMed  Google Scholar 

  19. Lee RT, Zhao Z, Ingham PW (2016) Hedgehog signalling. Development 143(3):367–372. https://doi.org/10.1242/dev.120154

    Article  CAS  PubMed  Google Scholar 

  20. Ingham PW (2022) Hedgehog signaling. Curr Top Dev Biol 149:1–58. https://doi.org/10.1016/bs.ctdb.2022.04.003

    Article  CAS  PubMed  Google Scholar 

  21. Mann RK, Beachy PA (2004) Novel lipid modifications of secreted protein signals. Annu Rev Biochem 73:891–923. https://doi.org/10.1146/annurev.biochem.73.011303.073933

    Article  CAS  PubMed  Google Scholar 

  22. Tukachinsky H et al (2012) Dispatched and scube mediate the efficient secretion of the cholesterol-modified hedgehog ligand. Cell Rep 2(2):308–320. https://doi.org/10.1016/j.celrep.2012.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jakobs P et al (2014) Scube2 enhances proteolytic Shh processing from the surface of Shh-producing cells. J Cell Sci 127(8):1726–37. https://doi.org/10.1242/jcs.137695

    Article  CAS  PubMed  Google Scholar 

  24. Gallet A et al (2006) Cholesterol modification is necessary for controlled planar long-range activity of hedgehog in Drosophila epithelia. Development 133(3):407–418. https://doi.org/10.1242/dev.02212

    Article  CAS  PubMed  Google Scholar 

  25. Traister A, Shi W, Filmus J (2008) Mammalian notum induces the release of glypicans and other GPI-anchored proteins from the cell surface. Biochem J 410(3):503–511. https://doi.org/10.1042/BJ20070511

    Article  CAS  PubMed  Google Scholar 

  26. Ortmann C et al (2015) Sonic hedgehog processing and release are regulated by glypican heparan sulfate proteoglycans. J Cell Sci 128(12):2374–2385. https://doi.org/10.1242/jcs.170670

    Article  CAS  PubMed  Google Scholar 

  27. Parchure A, Vyas N, Mayor S (2018) Wnt and hedgehog: secretion of lipid-modified morphogens. Trends Cell Biol 28(2):157–170. https://doi.org/10.1016/j.tcb.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  28. Gailani MR et al (1996) The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet 14(1):78–81. https://doi.org/10.1038/ng0996-78

    Article  CAS  PubMed  Google Scholar 

  29. van den Heuvel M, Ingham PW (1996) Smoothened encodes a receptor-like serpentine protein required for hedgehog signalling. Nature 382(6591):547–551. https://doi.org/10.1038/382547a0

    Article  PubMed  Google Scholar 

  30. Gorojankina T (2016) Hedgehog signaling pathway: a novel model and molecular mechanisms of signal transduction. Cell Mol Life Sci 73(7):1317–1332. https://doi.org/10.1007/s00018-015-2127-4

    Article  CAS  PubMed  Google Scholar 

  31. Kwong L, Bijlsma MF, Roelink H (2014) Shh-mediated degradation of Hhip allows cell autonomous and non-cell autonomous shh signalling. Nat Commun 5:4849. https://doi.org/10.1038/ncomms5849

    Article  CAS  PubMed  Google Scholar 

  32. Huangfu D, Anderson KV (2006) Signaling from smo to Ci/Gli: conservation and divergence of hedgehog pathways from Drosophila to vertebrates. Development 133(1):3–14. https://doi.org/10.1242/dev.02169

    Article  CAS  PubMed  Google Scholar 

  33. Huangfu D, Anderson KV (2005) Cilia and hedgehog responsiveness in the mouse. Proc Natl Acad Sci USA 102(32):11325–11330. https://doi.org/10.1073/pnas.0505328102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stone DM et al (1996) The tumour-suppressor gene patched encodes a candidate receptor for sonic hedgehog. Nature 384(6605):129–134. https://doi.org/10.1038/384129a0

    Article  CAS  PubMed  Google Scholar 

  35. Corbit KC et al (2005) Vertebrate smoothened functions at the primary cilium. Nature 437(7061):1018–1021. https://doi.org/10.1038/nature04117

    Article  CAS  PubMed  Google Scholar 

  36. Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15(23):3059–3087. https://doi.org/10.1101/gad.938601

    Article  CAS  PubMed  Google Scholar 

  37. Wang C et al (2013) Structure of the human smoothened receptor bound to an antitumour agent. Nature 497(7449):338–. https://doi.org/10.1038/nature12167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8(5):387–398. https://doi.org/10.1038/nrc2389

    Article  CAS  PubMed  Google Scholar 

  39. Huang HC, Klein PS (2004) The frizzled family: receptors for multiple signal transduction pathways. Genome Biol 5(7):234. https://doi.org/10.1186/gb-2004-5-7-234

    Article  PubMed  PubMed Central  Google Scholar 

  40. Marigo V et al (1996) Biochemical evidence that patched is the hedgehog receptor. Nature 384(6605):176–179. https://doi.org/10.1038/384176a0

    Article  CAS  PubMed  Google Scholar 

  41. Frank-Kamenetsky M et al (2002) Small-molecule modulators of hedgehog signaling: identification and characterization of smoothened agonists and antagonists. J Biol. https://doi.org/10.1186/1475-4924-1-10

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen JK et al (2002) Small molecule modulation of smoothened activity. Proc Natl Acad Sci U S A 99(22):14071–14076. https://doi.org/10.1073/pnas.182542899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sharpe HJ et al (2015) Regulation of the oncoprotein smoothened by small molecules. Nat Chem Biol 11(4):246–255. https://doi.org/10.1038/nchembio.1776

    Article  CAS  PubMed  Google Scholar 

  44. Peart JR et al (2002) Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc Natl Acad Sci U S A 99(16):10865–10869. https://doi.org/10.1073/pnas.152330599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dwyer JR et al (2007) Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells. J Biol Chem 282(12):8959–8968. https://doi.org/10.1074/jbc.M611741200

    Article  CAS  PubMed  Google Scholar 

  46. Nachtergaele S et al (2012) Oxysterols are allosteric activators of the oncoprotein smoothened. Nat Chem Biol 8(2):211–220. https://doi.org/10.1038/nchembio.765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Corcoran RB, Scott MP (2006) Oxysterols stimulate sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc Natl Acad Sci U S A 103(22):8408–8413. https://doi.org/10.1073/pnas.0602852103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao Y, Tong C, Jiang J (2007) Hedgehog regulates smoothened activity by inducing a conformational switch. Nature 450(7167):252–258. https://doi.org/10.1038/nature06225

    Article  CAS  PubMed  Google Scholar 

  49. Chen Y et al (2011) Sonic hedgehog dependent phosphorylation by CK1alpha and GRK2 is required for ciliary accumulation and activation of smoothened. PLoS Biol 9(6):e. https://doi.org/10.1371/journal.pbio.1001083

    Article  CAS  Google Scholar 

  50. Hui CC et al (1994) Expression of three mouse homologs of the Drosophila segment polarity gene cubitus interruptus, Gli, Gli-2, and Gli-3, in ectoderm- and mesoderm-derived tissues suggests multiple roles during postimplantation development. Dev Biol 162(2):402–3. https://doi.org/10.1006/dbio.1994.1097

    Article  CAS  PubMed  Google Scholar 

  51. Han YH et al (2019) Phosphorylation of Ci/Gli by Fused Family Kinases promotes hedgehog signaling. Dev Cell 50(5):610–. https://doi.org/10.1016/j.devcel.2019.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Karlstrom RO et al (2003) Genetic analysis of zebrafish gli1 and gli2 reveals divergent requirements for gli genes in vertebrate development. Development 130(8):1549–1564. https://doi.org/10.1242/dev.00364

    Article  CAS  PubMed  Google Scholar 

  53. Endoh-Yamagami S et al (2009) The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development. Curr Biol 19(15):1320–1326. https://doi.org/10.1016/j.cub.2009.06.046

    Article  CAS  PubMed  Google Scholar 

  54. Liem KF Jr et al (2009) Mouse Kif7/Costal2 is a cilia-associated protein that regulates sonic hedgehog signaling. Proc Natl Acad Sci U S A 106(32):13377–13382. https://doi.org/10.1073/pnas.0906944106

    Article  PubMed  PubMed Central  Google Scholar 

  55. Methot N, Basler K (2000) Suppressor of fused opposes hedgehog signal transduction by impeding nuclear accumulation of the activator form of Cubitus interruptus. Development 127(18):4001. https://doi.org/10.1242/dev.127.18.4001

    Article  CAS  PubMed  Google Scholar 

  56. Jiang J, Hui C (2008) Hedgehog signaling in Development and Cancer. Dev Cell 15(6):801–812. https://doi.org/10.1016/j.devcel.2008.11.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pan Y et al (2006) Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol Cell Biol 26(9):3365–3377. https://doi.org/10.1128/mcb.26.9.3365-3377.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pan Y, Wang B (2007) A novel protein-processing domain in Gli2 and Gli3 differentially blocks complete protein degradation by the proteasome. J Biol Chem 282(15):10846–10852. https://doi.org/10.1074/jbc.M608599200

    Article  CAS  PubMed  Google Scholar 

  59. Wang B, Li Y (2006) Evidence for the direct involvement of {beta}TrCP in Gli3 protein processing. Proc Natl Acad Sci U S A 103(1):33–38. https://doi.org/10.1073/pnas.0509927103

    Article  CAS  PubMed  Google Scholar 

  60. Chen Y, Jiang J (2013) Decoding the phosphorylation code in hedgehog signal transduction. Cell Res 23(2):186–200. https://doi.org/10.1038/cr.2013.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li X et al (2021) The role of shh signalling pathway in central nervous system development and related diseases. Cell Biochem Funct 39(2):180–189. https://doi.org/10.1002/cbf.3582

    Article  CAS  PubMed  Google Scholar 

  62. Li J et al (2017) PKA-mediated Gli2 and Gli3 phosphorylation is inhibited by hedgehog signaling in cilia and reduced in Talpid3 mutant. Dev Biol 429(1):147–157. https://doi.org/10.1016/j.ydbio.2017.06.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mukhopadhyay S et al (2013) The ciliary G-protein-coupled receptor Gpr161 negatively regulates the sonic hedgehog pathway via cAMP signaling. Cell 152(1–2):210–223. https://doi.org/10.1016/j.cell.2012.12.026

    Article  CAS  PubMed  Google Scholar 

  64. Barzi M et al (2010) Sonic-hedgehog-mediated proliferation requires the localization of PKA to the cilium base. J Cell Sci 123(1):62–69. https://doi.org/10.1242/jcs.060020

    Article  CAS  PubMed  Google Scholar 

  65. Stone DM et al (1999) Characterization of the human suppressor of fused, a negative regulator of the zinc-finger transcription factor. Gli J Cell Sci 112(Pt 23):4437–48. https://doi.org/10.1242/jcs.112.23.4437

    Article  CAS  PubMed  Google Scholar 

  66. Goetz SC, Anderson KV (2010) The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11(5):331–344. https://doi.org/10.1038/nrg2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rimkus TK et al (2016) Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers. https://doi.org/10.3390/cancers8020022

    Article  PubMed  PubMed Central  Google Scholar 

  68. Teperino R et al (2014) Canonical and non-canonical hedgehog signalling and the control of metabolism. Semin Cell Dev Biol 33:81–92. https://doi.org/10.1016/j.semcdb.2014.05.007

    Article  CAS  PubMed  Google Scholar 

  69. Brennan D et al (2012) Noncanonical hedgehog signaling. Vitam Horm 88:55–72. https://doi.org/10.1016/B978-0-12-394622-5.00003-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chang H et al (2010) Activation of Erk by sonic hedgehog independent of canonical hedgehog signalling. Int J Biochem Cell Biol 42(9):1462–1471. https://doi.org/10.1016/j.biocel.2010.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chinchilla P et al (2010) Hedgehog proteins activate pro-angiogenic responses in endothelial cells through non-canonical signaling pathways. Cell Cycle 9(3):570–579. https://doi.org/10.4161/cc.9.3.10591

    Article  CAS  PubMed  Google Scholar 

  72. Jenkins D (2009) Hedgehog signalling: emerging evidence for non-canonical pathways. Cell Signal 21(7):1023–1034. https://doi.org/10.1016/j.cellsig.2009.01.033

    Article  CAS  PubMed  Google Scholar 

  73. Yang J, Kornbluth S (1999) All aboard the cyclin train: subcellular trafficking of cyclins and their CDK partners. Trends Cell Biol 9(6):207–210. https://doi.org/10.1016/S0962-8924(99)01577-9

    Article  CAS  PubMed  Google Scholar 

  74. Hagting A et al (1998) MPF localization is controlled by nuclear export. EMBO J 17(14):4127–4138. https://doi.org/10.1093/emboj/17.14.4127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li J, Meyer AN, Donoghue DJ (1997) Nuclear localization of cyclin B1 mediates its biological activity and is regulated by phosphorylation. Proc Natl Acad Sci USA 94(2):502–507. https://doi.org/10.1073/pnas.94.2.502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Robbins DJ, Fei DL, Riobo NA (2012) The hedgehog signal transduction network. Sci Signal. https://doi.org/10.1126/scisignal.2002906

    Article  PubMed  PubMed Central  Google Scholar 

  77. Thibert C et al (2003) Inhibition of neuroepithelial patched-induced apoptosis by sonic hedgehog. Science 301(5634):843–846. https://doi.org/10.1126/science.1085405

    Article  CAS  PubMed  Google Scholar 

  78. Kagawa H et al (2011) A novel signaling pathway mediated by the nuclear targeting of C-terminal fragments of mammalian patched 1. PLoS ONE 6(4):e. https://doi.org/10.1371/journal.pone.0018638

    Article  CAS  Google Scholar 

  79. Mille F et al (2009) The patched dependence receptor triggers apoptosis through a DRAL-caspase-9 complex. Nat Cell Biol 11(6):739–746. https://doi.org/10.1038/ncb1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Riobo NA et al (2006) Phosphoinositide 3-kinase and akt are essential for Sonic hedgehog signaling. Proc Natl Acad Sci U S A 103(12):4505. https://doi.org/10.1073/pnas.0504337103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Polizio AH et al (2011) Heterotrimeric G(i) proteins link hedgehog signaling to activation of rho small GTPases to Promote Fibroblast Migration. J Biol Chem 286(22):19589–19596. https://doi.org/10.1074/jbc.M110.197111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Polizio AH et al (2011) Sonic hedgehog activates the GTPases Rac1 and RhoA in a gli-independent manner through coupling of smoothened to Gi proteins. Sci Signal 4(200):pt. https://doi.org/10.1126/scisignal.2002396

    Article  CAS  Google Scholar 

  83. Bijlsma MF, Damhofer H, Roelink H (2012) Hedgehog-stimulated chemotaxis is mediated by smoothened located outside the primary cilium. Sci Signal. https://doi.org/10.1126/scisignal.2002798

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sasaki N, Kurisu J, Kengaku M (2010) Sonic hedgehog signaling regulates actin cytoskeleton via Tiam1-Rac1 cascade during spine formation. Mol Cell Neurosci 45(4):335–344. https://doi.org/10.1016/j.mcn.2010.07.006

    Article  CAS  PubMed  Google Scholar 

  85. Belgacem YH, Borodinsky LN (2011) Sonic hedgehog signaling is decoded by calcium spike activity in the developing spinal cord. Proc Natl Acad Sci U S A 108(11):4482–4487. https://doi.org/10.1073/pnas.1018217108

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yam PT et al (2009) Sonic hedgehog Guides axons through a Noncanonical, src-family-kinase-dependent signaling pathway. Neuron 62(3):349–362. https://doi.org/10.1016/j.neuron.2009.03.022

    Article  CAS  PubMed  Google Scholar 

  87. Teperino R et al (2012) Hedgehog partial agonism drives Warburg-like metabolism in muscle and Brown Fat. Cell 151(2):414–426. https://doi.org/10.1016/j.cell.2012.09.021

    Article  CAS  PubMed  Google Scholar 

  88. Liang M et al (2018) GLI-1 facilitates the EMT induced by TGF-beta1 in gastric cancer. Eur Rev Med Pharmacol Sci 22(20):6809–6815. https://doi.org/10.26355/eurrev_201810_16148

    Article  CAS  PubMed  Google Scholar 

  89. Zhou J et al (2016) Non-canonical GLI1/2 activation by PI3K/AKT signaling in renal cell carcinoma: a novel potential therapeutic target. Cancer Lett 370(2):313–323. https://doi.org/10.1016/j.canlet.2015.11.006

    Article  CAS  PubMed  Google Scholar 

  90. Ji ZY et al (2007) Oncogenic KRAS activates hedgehog signaling pathway in pancreatic cancer cells. J Biol Chem 282(19):14048–14055. https://doi.org/10.1074/jbc.M611089200

    Article  CAS  PubMed  Google Scholar 

  91. Cai QS et al (2009) Protein kinase C delta negatively regulates hedgehog signaling by inhibition of Gli1 activity. J Biol Chem 284(4):2150–2158. https://doi.org/10.1074/jbc.M803235200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Stecca B, Ruiz i Altaba A (2009) A GLI1-p53 inhibitory loop controls neural stem cell and tumour cell numbers. EMBO J 28(6):663–676. https://doi.org/10.1038/emboj.2009.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Makinodan E, Marneros AG (2012) Protein kinase A activation inhibits oncogenic sonic hedgehog signalling and suppresses basal cell carcinoma of the skin. Exp Dermatol 21(11):847–852. https://doi.org/10.1111/exd.12016

    Article  CAS  PubMed  Google Scholar 

  94. Dinakar P, Stillman AM (2016) Pathogenesis of pain. Semin Pediatr Neurol 23(3):201–208. https://doi.org/10.1016/j.spen.2016.10.003

    Article  PubMed  Google Scholar 

  95. Finnerup NB, Kuner R, Jensen TS (2021) Neuropathic pain: from mechanisms to treatment. Physiol Rev 101(1):259–301. https://doi.org/10.1152/physrev.00045.2019

    Article  CAS  PubMed  Google Scholar 

  96. Nickel FT et al (2012) Mechanisms of neuropathic pain. Eur Neuropsychopharmacol 22(2):81–91. https://doi.org/10.1016/j.euroneuro.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  97. Cohen SP, Mao J (2014) Neuropathic pain: mechanisms and their clinical implications. BMJ 348:f7656. https://doi.org/10.1136/bmj.f7656

    Article  PubMed  Google Scholar 

  98. Fishbain DA et al (2014) What is the evidence that neuropathic pain is present in chronic low back pain and soft tissue syndromes? An evidence-based structured review. Pain Med 15(1):4–15. https://doi.org/10.1111/pme.12229

    Article  PubMed  Google Scholar 

  99. Devor M et al (1989) Na + channel accumulation on axolemma of afferent endings in nerve end neuromas in Apteronotus. Neurosci Lett 102(2–3):149–154. https://doi.org/10.1016/0304-3940(89)90070-0

    Article  CAS  PubMed  Google Scholar 

  100. Wall PD, Devor M (1983) Sensory afferent impulses originate from dorsal root ganglia as well as from the periphery in normal and nerve injured rats. Pain 17(4):321–339. https://doi.org/10.1016/0304-3959(83)90164-1

    Article  CAS  PubMed  Google Scholar 

  101. Shinder V et al (1999) Structural basis of sympathetic-sensory coupling in rat and human dorsal root ganglia following peripheral nerve injury. J Neurocytol 28(9):743–761. https://doi.org/10.1023/a:1007090105840

    Article  CAS  PubMed  Google Scholar 

  102. Ueda H (2006) Molecular mechanisms of neuropathic pain-phenotypic switch and initiation mechanisms. Pharmacol Ther 109(1–2):57–77. https://doi.org/10.1016/j.pharmthera.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  103. Meacham K et al (2017) Neuropathic pain: central vs. peripheral mechanisms. Curr Pain Headache Rep 21(6):28. https://doi.org/10.1007/s11916-017-0629-5

    Article  PubMed  Google Scholar 

  104. Guo W et al (2002) Tyrosine phosphorylation of the NR2B subunit of the NMDA receptor in the spinal cord during the development and maintenance of inflammatory hyperalgesia. J Neurosci 22(14):6208–6217. https://doi.org/10.1523/jneurosci.22-14-06208.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Miller KE et al (2011) Glutamate pharmacology and metabolism in peripheral primary afferents: physiological and pathophysiological mechanisms. Pharmacol Ther 130(3):283–309. https://doi.org/10.1016/j.pharmthera.2011.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sung B, Lim G, Mao J (2003) Altered expression and uptake activity of spinal glutamate transporters after nerve Injury Contribute to the Pathogenesis of Neuropathic Pain in rats. J Neurosci 23(7):2899–2910. https://doi.org/10.1523/jneurosci.23-07-02899.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ji RR, Berta T, Nedergaard M (2013) Glia and pain: is chronic pain a gliopathy? Pain.  https://doi.org/10.1016/j.pain.2013.06.022

  108. Mika J et al (2013) Importance of glial activation in neuropathic pain. Eur J Pharmacol 716(1–3):106–119. https://doi.org/10.1016/j.ejphar.2013.01.072

    Article  CAS  PubMed  Google Scholar 

  109. Zhuo M (2008) Cortical excitation and chronic pain. Trends Neurosci 31(4):199–207. https://doi.org/10.1016/j.tins.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  110. Rouwette T et al (2012) The amygdala, a relay station for switching on and off pain. Eur J Pain 16(6):782–792. https://doi.org/10.1002/j.1532-2149.2011.00071.x

    Article  CAS  PubMed  Google Scholar 

  111. Janssen SP et al (2011) Differential GABAergic disinhibition during the development of painful peripheral neuropathy. Neuroscience 184:183–194. https://doi.org/10.1016/j.neuroscience.2011.03.060

    Article  CAS  PubMed  Google Scholar 

  112. Moore KA et al (2002) Partial peripheral nerve Injury promotes a selective loss of GABAergic Inhibition in the superficial dorsal horn of the spinal cord. J Neurosci 22(15):6724–6731. https://doi.org/10.1523/jneurosci.22-15-06724.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Inoue K (2021) Nociceptive signaling of P2X receptors in chronic pain states. Purinergic Signal 17(1):41–47. https://doi.org/10.1007/s11302-020-09743-w

    Article  CAS  PubMed  Google Scholar 

  114. Marwaha L et al (2016) TRP channels: potential drug target for neuropathic pain. Inflammopharmacology 24(6):305–317. https://doi.org/10.1007/s10787-016-0288-x

    Article  CAS  PubMed  Google Scholar 

  115. Vallejo R et al (2010) The role of glia and the immune system in the development and maintenance of neuropathic pain. Pain Pract 10(3):167–184. https://doi.org/10.1111/j.1533-2500.2010.00367.x

    Article  PubMed  Google Scholar 

  116. Yan YY et al (2017) Research progress of mechanisms and drug therapy for neuropathic pain. Life Sci 190:68–77. https://doi.org/10.1016/j.lfs.2017.09.033

    Article  CAS  PubMed  Google Scholar 

  117. Souza M, de Araujo D et al (2020) TRPA1 as a therapeutic target for nociceptive pain. Expert Opin Ther Targets 24(10):997–1008. https://doi.org/10.1080/14728222.2020.1815191

    Article  CAS  Google Scholar 

  118. Nagase T et al (2008) Hedgehog signalling in vascular development. Angiogenesis 11(1):71–77. https://doi.org/10.1007/s10456-008-9105-5

    Article  CAS  PubMed  Google Scholar 

  119. Alvarez-Buylla A, Ihrie RA (2014) Sonic hedgehog signaling in the postnatal brain. Semin Cell Dev Biol 33:105–111. https://doi.org/10.1016/j.semcdb.2014.05.008

    Article  CAS  PubMed  Google Scholar 

  120. Chen SD et al (2018) Emerging roles of Sonic hedgehog in adult neurological diseases: neurogenesis and beyond. Int J Mol Sci. https://doi.org/10.3390/ijms19082423

    Article  PubMed  PubMed Central  Google Scholar 

  121. Agarwala S, Sanders TA, Ragsdale CW (2001) Sonic hedgehog control of size and shape in midbrain pattern formation. Science 291(5511):2147–2150. https://doi.org/10.1126/science.1058624

    Article  CAS  PubMed  Google Scholar 

  122. Wang LC, Almazan G (2016) Role of sonic hedgehog signaling in oligodendrocyte differentiation. Neurochem Res 41(12):3289–3299. https://doi.org/10.1007/s11064-016-2061-3

    Article  CAS  PubMed  Google Scholar 

  123. Orentas DM et al (1999) Sonic hedgehog signaling is required during the appearance of spinal cord oligodendrocyte precursors. Development 126(11):2419–2429. https://doi.org/10.1242/dev.126.11.2419

    Article  CAS  PubMed  Google Scholar 

  124. Lospinoso Severini L et al (2020) The SHH/GLI signaling pathway: a therapeutic target for medulloblastoma. Expert Opin Ther Targets 24(11):1159–1181. https://doi.org/10.1080/14728222.2020.1823967

    Article  CAS  PubMed  Google Scholar 

  125. Zhang ZC et al (2018) Activity of metabotropic glutamate receptor 4 suppresses proliferation and promotes apoptosis with inhibition of Gli-1 in human glioblastoma cells. Front NeuroSci https://doi.org/10.3389/fnins.2018.00320

    Article  PubMed  PubMed Central  Google Scholar 

  126. Yang C, Qi Y, Sun Z (2021) The role of sonic hedgehog pathway in the development of the central nervous system and aging-related neurodegenerative diseases. Front Mol Biosci 8:711710. https://doi.org/10.3389/fmolb.2021.711710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Choi J et al (2014) Autism Associated Gene, ENGRAILED2, and flanking gene levels are altered in Post-Mortem Cerebellum. PLoS ONE. https://doi.org/10.1371/journal.pone.0087208

    Article  PubMed  PubMed Central  Google Scholar 

  128. Fang M et al (2011) Increased expression of sonic hedgehog in temporal lobe epileptic foci in humans and experimental rats. Neuroscience 182:62–70. https://doi.org/10.1016/j.neuroscience.2011.02.060

    Article  CAS  PubMed  Google Scholar 

  129. Zhang D et al (2016) nNOS translocates into the Nucleus and interacts with Sox2 to protect neurons against early excitotoxicity via Promotion of shh transcription. Mol Neurobiol 53(9):6444–6458. https://doi.org/10.1007/s12035-015-9545-z

    Article  CAS  PubMed  Google Scholar 

  130. Vorobyeva AG, Saunders AJ (2018) Amyloid-beta interrupts canonical sonic hedgehog signaling by distorting primary cilia structure. Cilia.  https://doi.org/10.1186/s13630-018-0059-y10.1186/s13630-018-0059-y

  131. Patel M (2004) Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic Biol Med 37(12):1951–1962. https://doi.org/10.1016/j.freeradbiomed.2004.08.021

    Article  CAS  PubMed  Google Scholar 

  132. Dai RL et al (2011) Sonic hedgehog protects cortical neurons against oxidative stress. Neurochem Res 36(1):67–75. https://doi.org/10.1007/s11064-010-0264-6

    Article  CAS  PubMed  Google Scholar 

  133. Dai R et al (2012) Involvement of PI3K/Akt pathway in the neuroprotective effect of sonic hedgehog on cortical neurons under oxidative stress. J Huazhong Univ Sci Technolog Med Sci 32(6):856–860. https://doi.org/10.1007/s11596-012-1047-x

    Article  CAS  PubMed  Google Scholar 

  134. Wang Y et al (2014) Interleukin-1beta induces blood-brain barrier disruption by downregulating sonic hedgehog in astrocytes. PLoS ONE.  https://doi.org/10.1371/journal.pone.0110024

  135. Alvarez JI et al (2011) The hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science 334(6063):1727–1731. https://doi.org/10.1126/science.1206936

    Article  CAS  PubMed  Google Scholar 

  136. Amankulor NM et al (2009) Sonic hedgehog pathway activation is Induced by Acute Brain Injury and regulated by Injury-Related inflammation. J Neurosci 29(33):10299–10308. https://doi.org/10.1523/jneurosci.2500-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hwang I et al (2016) Intrathecal transplantation of embryonic stem cell-derived spinal GABAergic neural precursor cells attenuates Neuropathic Pain in a spinal cord Injury Rat Model. Cell Transplant 25(3):593–607. https://doi.org/10.3727/096368915x689460

    Article  PubMed  Google Scholar 

  138. Martinez JA et al (2015) Intrinsic facilitation of adult peripheral nerve regeneration by the sonic hedgehog morphogen. Exp Neurol 271:493–505. https://doi.org/10.1016/j.expneurol.2015.07.018

    Article  CAS  PubMed  Google Scholar 

  139. Gomez-Sanchez JA et al (2015) Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. J Cell Biol 210(1):153–168. https://doi.org/10.1083/jcb.201503019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Nocera G, Jacob C (2020) Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell Mol Life Sci 77(20):3977–3989. https://doi.org/10.1007/s00018-020-03516-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zakaria M et al (2019) The shh receptor Boc is important for myelin formation and repair. Development. https://doi.org/10.1242/dev.172502

    Article  PubMed  PubMed Central  Google Scholar 

  142. Kusano KF et al (2004) Sonic hedgehog induces arteriogenesis in diabetic vasa nervorum and restores function in diabetic neuropathy. Arterioscler Thromb Vasc Biol 24(11):2102–2107. https://doi.org/10.1161/01.ATV.0000144813.44650.75

    Article  CAS  PubMed  Google Scholar 

  143. Angeloni NL et al (2011) Regeneration of the cavernous nerve by Sonic hedgehog using aligned peptide amphiphile nanofibers. Biomaterials 32(4):1091–1101. https://doi.org/10.1016/j.biomaterials.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  144. Bond CW et al (2013) Sonic hedgehog regulates brain-derived neurotrophic factor in normal and regenerating cavernous nerves. J Sex Med 10(3):730–737. https://doi.org/10.1111/jsm.12030

    Article  CAS  PubMed  Google Scholar 

  145. Hashimoto M et al (2008) Neuroprotective effect of sonic hedgehog up-regulated in Schwann cells following sciatic nerve injury. J Neurochem 107(4):918–927. https://doi.org/10.1111/j.1471-4159.2008.05666.x

    Article  CAS  PubMed  Google Scholar 

  146. Angeloni N et al (2013) Sonic hedgehog is neuroprotective in the cavernous nerve with crush injury. J Sex Med 10(5):1240–1250. https://doi.org/10.1111/j.1743-6109.2012.02930.x

    Article  CAS  PubMed  Google Scholar 

  147. Yamada Y et al (2018) The Sonic hedgehog signaling pathway regulates inferior alveolar nerve regeneration. Neurosci Lett 671:114–119. https://doi.org/10.1016/j.neulet.2017.12.051

    Article  CAS  PubMed  Google Scholar 

  148. Akazawa C et al (2004) The upregulated expression of sonic hedgehog in motor neurons after rat facial nerve axotomy. J Neurosci 24(36):7923–7930. https://doi.org/10.1523/JNEUROSCI.1784-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lopes MA et al (2009) Oral traumatic neuroma with mature ganglion cells: a case report and review of the literature. J Oral Maxillofac Pathol 13(2):67–69. https://doi.org/10.4103/0973-029X.57672

    Article  PubMed  PubMed Central  Google Scholar 

  150. Bobarnac Dogaru GL et al (2018) The role of hedgehog-responsive fibroblasts in facial nerve regeneration. Exp Neurol 303:72–79. https://doi.org/10.1016/j.expneurol.2018.01.008

    Article  CAS  PubMed  Google Scholar 

  151. Ubogu EE (2020) Biology of the human blood-nerve barrier in health and disease. Exp Neurol 328:113272. https://doi.org/10.1016/j.expneurol.2020.113272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gaudet AD, Popovich PG, Ramer MS (2011) Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation 8:110. https://doi.org/10.1186/1742-2094-8-110

    Article  PubMed  PubMed Central  Google Scholar 

  153. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413(6852):203–210. https://doi.org/10.1038/35093019

    Article  CAS  PubMed  Google Scholar 

  154. Dubin AE, Patapoutian A (2010) Nociceptors: the sensors of the pain pathway. J Clin Invest 120(11):3760–3772. https://doi.org/10.1172/JCI42843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gold MS, Gebhart GF (2010) Nociceptor sensitization in pain pathogenesis. Nat Med 16(11):1248–1257. https://doi.org/10.1038/nm.2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Babcock DT, Landry C, Galko MJ (2009) Cytokine signaling mediates UV-induced nociceptive sensitization in Drosophila Larvae. Curr Biol 19(10):799–806. https://doi.org/10.1016/j.cub.2009.03.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Babcock DT et al (2011) Hedgehog signaling regulates nociceptive sensitization. Curr Biol 21(18):1525–1533. https://doi.org/10.1016/j.cub.2011.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Dubovy P (2011) Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction. Ann Anat 193(4):267–275. https://doi.org/10.1016/j.aanat.2011.02.011

    Article  CAS  PubMed  Google Scholar 

  159. Moreau N et al (2017) Hedgehog pathway-mediated vascular alterations following trigeminal nerve Injury. J Dent Res 96(4):450–457. https://doi.org/10.1177/0022034516679395

    Article  CAS  PubMed  Google Scholar 

  160. Lim TKY et al (2014) Blood-nerve barrier dysfunction contributes to the generation of neuropathic pain and allows targeting of injured nerves for pain relief. Pain 155(5):954–967. https://doi.org/10.1016/j.pain.2014.01.026

    Article  CAS  PubMed  Google Scholar 

  161. Chen JY et al (2018) Different effects of dexmedetomidine and midazolam on the expression of NR2B and GABAA-1 following peripheral nerve injury in rats. IUBMB Life 70(2):143–152. https://doi.org/10.1002/iub.1713

    Article  CAS  PubMed  Google Scholar 

  162. Shi GD et al (2013) Increased miR-195 aggravates neuropathic pain by inhibiting autophagy following peripheral nerve injury. Glia 61(4):504–512. https://doi.org/10.1002/glia.22451

    Article  PubMed  Google Scholar 

  163. McDonald MK, Ajit SK (2015) MicroRNA biology and pain, in molecular and cell biology of pain. T.J. Price and G. Dussor, Editors. pp 215–249

  164. Wang XH et al (2019) Inhibition of MicroRNA-195 alleviates Neuropathic Pain by Targeting Patched1 and inhibiting SHH Signaling Pathway activation. Neurochem Res 44(7):1690–1702. https://doi.org/10.1007/s11064-019-02797-2

    Article  CAS  PubMed  Google Scholar 

  165. Moreau N et al (2017) Could an endoneurial endothelial crosstalk between Wnt/beta-catenin and sonic hedgehog pathways underlie the early disruption of the infra-orbital blood-nerve barrier following chronic constriction injury? Mol Pain 13:1744806917727625. https://doi.org/10.1177/1744806917727625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Doyle TM et al (2020) Chronic morphine-induced changes in signaling at the A3 adenosine receptor contribute to morphine-induced hyperalgesia, tolerance, and withdrawal. J Pharmacol Exp Ther 374(2):331–341. https://doi.org/10.1124/jpet.120.000004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hu XM et al (2016) Downregulation of miR-219 enhances brain-derived neurotrophic factor production in mouse dorsal root ganglia to mediate morphine analgesic tolerance by upregulating CaMKIIgamma. Mol Pain https://doi.org/10.1177/1744806916666283

    Article  PubMed  PubMed Central  Google Scholar 

  168. Chao YC et al (2016) Demethylation regulation of BDNF gene expression in dorsal root ganglion neurons is implicated in opioid-induced pain hypersensitivity in rats. Neurochem Int 97:91–98. https://doi.org/10.1016/j.neuint.2016.03.007

    Article  CAS  PubMed  Google Scholar 

  169. Liu S et al (2018) Sonic hedgehog signaling in spinal cord contributes to morphine-induced hyperalgesia and tolerance through upregulating brain-derived neurotrophic factor expression. J Pain Res 11:649–659. https://doi.org/10.2147/jpr.S153544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ma R, Kutchy NA, Hu GK (2021) Astrocyte-derived extracellular vesicle-mediated activation of primary ciliary signaling contributes to the development of morphine tolerance. Biol Psychiatry 90(8):575–585. https://doi.org/10.1016/j.biopsych.2021.06.009

    Article  CAS  PubMed  Google Scholar 

  171. Eva L, Feldman BC 1 (2019) Callaghan1, Rodica Pop-Busui2, Douglas W. Zochodne3, Douglas E. Wright4, David L. Bennett5, Vera Bril6,7, James W. Russell8, Vijay Viswanathan9, Diabetic neuropathy Nat Rev Dis Primers, 5(1): p. 42.https://doi.org/10.1038/s41572-019-0097-9

  172. Calcutt NA et al (2003) Therapeutic efficacy of sonic hedgehog protein in experimental diabetic neuropathy. J Clin Invest 111(4):507–514. https://doi.org/10.1172/jci200315792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ward JD (1993) Abnormal microvasculature in diabetic neuropathy. Eye (Lond) 223–226 7 (Pt 2. https://doi.org/10.1038/eye.1993.53

  174. Taylor FR et al (2001) Enhanced potency of human sonic hedgehog by hydrophobic modification. Biochemistry 40(14):4359–4371. https://doi.org/10.1021/bi002487u

    Article  CAS  PubMed  Google Scholar 

  175. Coolen M, Katz S, Bally-Cuif L (2013) miR-9: a versatile regulator of neurogenesis. Front Cell Neurosci 7:220. https://doi.org/10.3389/fncel.2013.00220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Peng H et al (2013) Urinary miR-29 correlates with albuminuria and carotid intima-media thickness in type 2 diabetes patients. PLoS ONE 8(12):e. https://doi.org/10.1371/journal.pone.0082607

    Article  CAS  Google Scholar 

  177. Sun Q et al (2020) microRNA-9 and – 29a regulate the progression of diabetic peripheral neuropathy via ISL1-mediated sonic hedgehog signaling pathway. Aging 12(12):11446–11465. https://doi.org/10.18632/aging.103230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Neufeld NJ, Elnahal SM, Alvarez RH (2017) Cancer pain: a review of epidemiology, clinical quality and value impact. Future Oncol 13(9):833–841. https://doi.org/10.2217/fon-2016-0423

    Article  CAS  PubMed  Google Scholar 

  179. Lohse I, Brothers SP (2020) Pathogenesis and treatment of pancreatic cancer related pain. Anticancer Res 40(4):1789–1796. https://doi.org/10.21873/anticanres.14133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Bapat AA et al (2011) Perineural invasion and associated pain in pancreatic cancer. Nat Rev Cancer 11(10):695–707. https://doi.org/10.1038/nrc3131

    Article  CAS  PubMed  Google Scholar 

  181. Demir IE, Friess H, Ceyhan GO (2015) Neural plasticity in pancreatitis and pancreatic cancer. Nat Reviews Gastroenterol Hepatol 12(11):649–659. https://doi.org/10.1038/nrgastro.2015.166

    Article  CAS  Google Scholar 

  182. Zhu Y et al (2011) Nerve growth factor modulates TRPV1 expression and function and mediates pain in chronic pancreatitis. Gastroenterology 141(1):370–377. https://doi.org/10.1053/j.gastro.2011.03.046

    Article  CAS  PubMed  Google Scholar 

  183. Schwartz ES et al (2011) Synergistic role of TRPV1 and TRPA1 in pancreatic pain and inflammation. Gastroenterology 140(4):1283–1291e1. https://doi.org/10.1053/j.gastro.2010.12.033

    Article  CAS  PubMed  Google Scholar 

  184. Apte MV, Wilson JS (2012) Dangerous liaisons: pancreatic stellate cells and pancreatic cancer cells. J Gastroenterol Hepatol 27 Suppl 2:69–74. https://doi.org/10.1111/j.1440-1746.2011.07000.x

  185. Bailey JM et al (2008) Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res 14(19):5995–6004. https://doi.org/10.1158/1078-0432.Ccr-08-0291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Han L et al (2016) Pancreatic stellate cells contribute pancreatic cancer pain via activation of sHH signaling pathway. Oncotarget 7(14):18146–18158. https://doi.org/10.18632/oncotarget.7776

    Article  PubMed  PubMed Central  Google Scholar 

  187. Han L et al (2020) Sonic hedgehog signaling pathway promotes pancreatic cancer pain via nerve growth factor. Reg Anesth Pain Med 45(2):137–144. https://doi.org/10.1136/rapm-2019-100991

    Article  PubMed  Google Scholar 

  188. Mantyh P (2013) Bone cancer pain: causes, consequences, and therapeutic opportunities. Pain 154(Supplement_1):54–62. https://doi.org/10.1016/j.pain.2013.07.044

    Article  Google Scholar 

  189. Liu S et al (2018) Hedgehog signaling contributes to bone cancer pain by regulating sensory neuron excitability in rats. Mol Pain https://doi.org/10.1177/1744806918767560

    Article  PubMed  PubMed Central  Google Scholar 

  190. Kehlet H, Jensen TS, Woolf CJ (2006) Persistent postsurgical pain: risk factors and prevention. Lancet 367(9522):1618–1625. https://doi.org/10.1016/s0140-6736(06)68700-x

    Article  PubMed  Google Scholar 

  191. Wildgaard K, Ravn J, Kehlet H (2009) Chronic post-thoracotomy pain: a critical review of pathogenic mechanisms and strategies for prevention. Eur J Cardiothorac Surg 36(1):170–180. https://doi.org/10.1016/j.ejcts.2009.02.005

    Article  PubMed  Google Scholar 

  192. Duan B et al (2012) PI3-kinase/Akt pathway-regulated membrane insertion of acid-sensing ion channel 1a underlies BDNF-induced pain hypersensitivity. J Neurosci 32(18):6351–6363. https://doi.org/10.1523/JNEUROSCI.4479-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Yang YT et al (2020) Sonic hedgehog signaling contributes to chronic post-thoracotomy pain via activating BDNF/TrkB pathway in rats. J Pain Res 13:1737–1746. https://doi.org/10.2147/jpr.S245515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Taher F et al (2012) Lumbar degenerative disc disease: current and future concepts of diagnosis and management. Adv Orthop. https://doi.org/10.1155/2012/970752

    Article  PubMed  PubMed Central  Google Scholar 

  195. Mohanty S, Dahia CL (2019) Defects in intervertebral disc and spine during development, degeneration, and pain: new research directions for disc regeneration and therapy. Wiley Interdisc Rev 8(4):10. https://doi.org/10.1002/wdev.343

    Article  Google Scholar 

  196. Vergroesen PP et al (2015) Mechanics and biology in intervertebral disc degeneration: a vicious circle. Osteoarthritis Cartilage 23(7):1057–1070. https://doi.org/10.1016/j.joca.2015.03.028

    Article  PubMed  Google Scholar 

  197. Jung WW et al (2011) Intervertebral disc degeneration-induced expression of pain-related molecules: glial cell-derived neurotropic factor as a key factor. J Neurosurg Anesthesiol 23(4):329–334. https://doi.org/10.1097/ANA.0b013e318220f033

    Article  PubMed  Google Scholar 

  198. Coppes MH et al (1997) Innervation of “painful” lumbar discs Spine (Phila Pa 1976), 22(20):2342-2349 discussion 2349-50. https://doi.org/10.1097/00007632-199710150-00005

  199. Nerlich AG et al (2007) Temporo-spatial distribution of blood vessels in human lumbar intervertebral discs. Eur Spine J 16(4):547–555. https://doi.org/10.1007/s00586-006-0213-x

    Article  PubMed  Google Scholar 

  200. Rajesh D, Dahia CL (2018) Role of sonic hedgehog signaling pathway in intervertebral disc formation and maintenance. Curr Mol Biol Rep 4(4):173–179. https://doi.org/10.1007/s40610-018-0107-9

    Article  PubMed  PubMed Central  Google Scholar 

  201. Dahia CL, Mahoney E, Wylie C (2012) Shh signaling from the Nucleus Pulposus is required for the postnatal growth and differentiation of the mouse intervertebral disc. PLoS ONE. https://doi.org/10.1371/journal.pone.0035944

    Article  PubMed  PubMed Central  Google Scholar 

  202. Bach FC et al (2019) Hedgehog proteins and parathyroid hormone-related protein are involved in intervertebral disc maturation, degeneration, and calcification. J Spine. https://doi.org/10.1002/jsp2.1071

    Article  Google Scholar 

  203. Dahia CL et al (2009) Intercellular signaling pathways active during intervertebral disc growth, differentiation, and aging. Spine (Phila Pa 1976) 34(5):456–462. https://doi.org/10.1097/BRS.0b013e3181913e98

    Article  PubMed  Google Scholar 

  204. Bonavita R et al (2018) Formation of the sacrum requires down-regulation of sonic hedgehog signaling in the sacral intervertebral discs. Biol Open. https://doi.org/10.1242/bio.035592

    Article  PubMed  PubMed Central  Google Scholar 

  205. Yamout BI, Alroughani R (2018) Multiple sclerosis. Semin Neurol 38(2):212–225. https://doi.org/10.1055/s-0038-1649502

    Article  PubMed  Google Scholar 

  206. Solaro C, Trabucco E, Messmer M, Uccelli (2013) Pain and multiple sclerosis: pathophysiology and treatment. Curr Neurol Neurosci Rep 13(1):320. https://doi.org/10.1007/s11910-012-0320-5

    Article  CAS  PubMed  Google Scholar 

  207. Prat A et al (2002) Migration of multiple sclerosis lymphocytes through brain endothelium. Arch Neurol 59(3):391–397. https://doi.org/10.1001/archneur.59.3.391

    Article  PubMed  Google Scholar 

  208. Mastronardi FG et al (2003) The amount of sonic hedgehog in multiple sclerosis white matter is decreased and cleavage to the signaling peptide is deficient. Mult Scler 9(4):362–371. https://doi.org/10.1191/1352458503ms924oa

    Article  CAS  PubMed  Google Scholar 

  209. Seifert T et al (2005) Differential expression of sonic hedgehog immunoreactivity during lesion evolution in autoimmune encephalomyelitis. J Neuropathol Exp Neurol 64(5):404–411. https://doi.org/10.1093/jnen/64.5.404

    Article  PubMed  Google Scholar 

  210. Sanchez MA, Sullivan GM, Armstrong RC (2018) Genetic detection of sonic hedgehog (shh) expression and cellular response in the progression of acute through chronic demyelination and remyelination. Neurobiol Dis 115:145–156. https://doi.org/10.1016/j.nbd.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  211. Lee C et al (2017) Molecular, cellular and behavioral changes associated with pathological pain signaling occur after dental pulp injury. Mol Pain 13:1744806917715173. https://doi.org/10.1177/1744806917715173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Yu C, Abbott PV (2007) An overview of the dental pulp: its functions and responses to injury. Aust Dent J 52(1 Suppl):S4–16. https://doi.org/10.1111/j.1834-7819.2007.tb00525.x

    Article  CAS  PubMed  Google Scholar 

  213. Moore ER et al (2022) CGRP and shh mediate the dental pulp cell response to neuron stimulation. J Dent Res 101(9):1119–1126. https://doi.org/10.1177/00220345221086858

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Scientific Foundation of China (No. 81973890); and CACMS Innovation Fund (No. CI2021A01817).

Author information

Authors and Affiliations

Authors

Contributions

GZ: conceptualization, writing—original draft. JR: writing—original draft. LS: writing—original draft. YB: conceptualization, writing—review and editing, supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yanju Bao.

Ethics declarations

Competing interests

The authors report there are no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, G., Ren, J., Shang, L. et al. Sonic Hedgehog Signaling Pathway: A Role in Pain Processing. Neurochem Res 48, 1611–1630 (2023). https://doi.org/10.1007/s11064-023-03864-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-03864-5

Keywords

Navigation