Skip to main content
Log in

Hedgehog signaling pathway: a novel model and molecular mechanisms of signal transduction

  • Visions and reflections
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The Hedgehog (Hh) signaling pathway has numerous roles in the control of cell proliferation, tissue patterning and stem cell maintenance. In spite of intensive study, the mechanisms of Hh signal transduction are not completely understood. Here I review published data and present a novel model of vertebrate Hh signaling suggesting that Smoothened (Smo) functions as a G-protein-coupled receptor in cilia. This is the first model to propose molecular mechanisms for the major steps of Hh signaling, including inhibition of Smo by Patched, Smo activation, and signal transduction from active Smo to Gli transcription factors. It also suggests a novel role for the negative pathway regulators Sufu and PKA in these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ingham PW, Nakano Y, Seger C (2011) Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet 12(6):393–406

    Article  CAS  PubMed  Google Scholar 

  2. Briscoe J, Thérond PP (2013) The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14(7):416–429

    Article  PubMed  CAS  Google Scholar 

  3. McMahon AP, Ingham PW, Tabin CJ (2003) Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol 53:1–114

    Article  CAS  PubMed  Google Scholar 

  4. Taipale J, Beachy PA (2001) The Hedgehog and Wnt signalling pathways in cancer. Nature 411(6835):349–354

    Article  CAS  PubMed  Google Scholar 

  5. Toftgård R (2000) Hedgehog signalling in cancer. Cell Mol Life Sci 57(12):1720–1731

    Article  PubMed  Google Scholar 

  6. Forbes AJ, Nakano Y, Taylor AM, Ingham PW (1993) Genetic analysis of hedgehog signalling in the Drosophila embryo. Dev Suppl 11:115–124

    Google Scholar 

  7. Ding Q, Motoyama J, Gasca S, Mo R, Sasaki H, Rossant J, Hui CC (1998) Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development 125(14):2533–2543

    CAS  PubMed  Google Scholar 

  8. Matise MP, Epstein DJ, Park HL, Platt KA, Joyner AL (1998) Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development 125(15):2759–2770

    CAS  PubMed  Google Scholar 

  9. Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DYR, Reiter JF (2005) Vertebrate Smoothened functions at the primary cilium. Nature 437(7061):1018–1021

    Article  CAS  PubMed  Google Scholar 

  10. Goetz SC, Anderson KV (2010) The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11(5):331–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marigo V, Davey RA, Zuo Y, Cunningham JM, Tabin CJ (1996) Biochemical evidence that patched is the Hedgehog receptor. Nature 384(6605):176–179

    Article  CAS  PubMed  Google Scholar 

  12. van den Heuvel M, Ingham PW (1996) Smoothened encodes a receptor-like serpentine protein required for hedgehog signalling. Nature 382(6591):547–551

    Article  PubMed  Google Scholar 

  13. Mukhopadhyay S, Wen X, Ratti N, Loktev A, Rangell L, Scales SJ, Jackson PK (2013) The ciliary G-protein-coupled receptor Gpr161 negatively regulates the Sonic hedgehog pathway via cAMP signaling. Cell 152(1–2):210–223

    Article  CAS  PubMed  Google Scholar 

  14. Pan Y, Bai CB, Joyner AL, Wang B (2006) Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol Cell Biol 26(9):3365–3377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang B, Li Y (2006) Evidence for the direct involvement of {beta}TrCP in Gli3 protein processing. Proc Natl Acad Sci USA 103(1):33–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kovacs JJ, Whalen EJ, Liu R, Xiao K, Kim J, Chen M, Wang J, Chen W, Lefkowitz RJ (2008) Beta-arrestin-mediated localization of smoothened to the primary cilium. Science 320(5884):1777–1781

  17. Dorn KV, Hughes CE, Rohatgi R (2012) A Smoothened-Evc2 complex transduces the Hedgehog signal at primary cilia. Dev Cell 23(4):823–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang C, Chen W, Chen Y, Jiang J (2012) Smoothened transduces Hedgehog signal by forming a complex with Evc/Evc2. Cell Res 22(11):1593–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tukachinsky H, Lopez LV, Salic A (2010) A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes. J Cell Biol 191(2):415–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Humke EW, Dorn KV, Milenkovic L, Scott MP, Rohatgi R (2010) The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins. Genes Dev 24(7):670–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mukhopadhyay S, Rohatgi R (2014) G-protein-coupled receptors, Hedgehog signaling and primary cilia. Semin Cell Dev Biol 33:63–72

    Article  CAS  PubMed  Google Scholar 

  22. Tuson M, He M, Anderson KV (2011) Protein kinase A acts at the basal body of the primary cilium to prevent Gli2 activation and ventralization of the mouse neural tube. Development 138(22):4921–4930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheung HOL, Zhang X, Ribeiro A, Mo R, Makino S, Puviindran V, Law KKL, Briscoe J, Hui CC (2009) The kinesin protein Kif7 is a critical regulator of Gli transcription factors in mammalian hedgehog signaling. Sci Signal 2(76):29

  24. Endoh-Yamagami S, Evangelista M, Wilson D, Wen X, Theunissen J-W, Phamluong K, Davis M, Scales SJ, Solloway MJ, de Sauvage FJ, Peterson AS (2009) The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development. Curr Biol CB 19(15):1320–1326

    Article  CAS  PubMed  Google Scholar 

  25. Liem KF, He M, Ocbina PJR, Anderson KV (2009) Mouse Kif7/Costal2 is a cilia-associated protein that regulates Sonic hedgehog signaling. Proc Natl Acad Sci USA 106(32):13377–13382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tay SY, Ingham PW, Roy S (2005) A homologue of the Drosophila kinesin-like protein Costal2 regulates Hedgehog signal transduction in the vertebrate embryo. Development 132(4):625–634

    Article  CAS  PubMed  Google Scholar 

  27. Beachy PA, Hymowitz SG, Lazarus RA, Leahy DJ, Siebold C (2010) Interactions between Hedgehog proteins and their binding partners come into view. Genes Dev 24(18):2001–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen Y, Struhl G (1996) Dual roles for patched in sequestering and transducing Hedgehog. Cell 87(3):553–563

    Article  CAS  PubMed  Google Scholar 

  29. Chuang PT, McMahon AP (1999) Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 397(6720):617–621

    Article  CAS  PubMed  Google Scholar 

  30. Altaba AI, Mas C, Stecca B (2007) The Gli code: an information nexus regulating cell fate, stemness and cancer. Trends Cell Biol 17(9):438–447

    Article  CAS  Google Scholar 

  31. Dessaud E, McMahon AP, Briscoe J (2008) Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135(15):2489–2503

    Article  CAS  PubMed  Google Scholar 

  32. Brennan D, Chen X, Cheng L, Mahoney M, Riobo NA (2012) Noncanonical Hedgehog signaling. Vitam Horm 88:55–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang C, Wu H, Katritch V, Han GW, Huang X-P, Liu W, Siu FY, Roth BL, Cherezov V, Stevens RC (2013) Structure of the human smoothened receptor bound to an antitumour agent. Nature 497(7449):338–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao Y, Tong C, Jiang J (2007) Hedgehog regulates smoothened activity by inducing a conformational switch. Nature 450(7167):252–258

    Article  CAS  PubMed  Google Scholar 

  35. Alcedo J, Ayzenzon M, Von Ohlen T, Noll M, Hooper JE (1996) The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell 86(2):221–232

    Article  CAS  PubMed  Google Scholar 

  36. Myers BR, Sever N, Chong YC, Kim J, Belani JD, Rychnovsky S, Bazan JF, Beachy PA (2013) Hedgehog pathway modulation by multiple lipid binding sites on the smoothened effector of signal response. Dev Cell 26(4):346–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nachtergaele S, Whalen DM, Mydock LK, Zhao Z, Malinauskas T, Krishnan K, Ingham PW, Covey DF, Siebold C, Rohatgi R (2013) Structure and function of the Smoothened extracellular domain in vertebrate Hedgehog signaling. Elife 2:e01340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Chen JK, Taipale J, Cooper MK, Beachy PA (2002) Inhibition of Hedgehog signaling by direct binding of cyclopamine to smoothened. Genes Dev 16(21):2743–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Frank-Kamenetsky M, Zhang XM, Bottega S, Guicherit O, Wichterle H, Dudek H, Bumcrot D, Wang FY, Jones S, Shulok J, Rubin LL, Porter JA (2002) Small-molecule modulators of Hedgehog signaling: identification and characterization of smoothened agonists and antagonists. J Biol 1(2):10

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wu X, Walker J, Zhang J, Ding S, Schultz PG (2004) Purmorphamine induces osteogenesis by activation of the hedgehog signaling pathway. Chem Biol 11(9):1229–1238

    Article  CAS  PubMed  Google Scholar 

  41. Wang C, Wu H, Evron T, Vardy E, Han GW, Huang X-P, Hufeisen SJ, Mangano TJ, Urban DJ, Katritch V, Cherezov V, Caron MG, Roth BL, Stevens RC (2014) Structural basis for smoothened receptor modulation and chemoresistance to anticancer drugs. Nat Commun 5:4355

    CAS  PubMed  PubMed Central  Google Scholar 

  42. DeCamp DL, Thompson TM, de Sauvage FJ, Lerner MR (2000) Smoothened activates Galphai-mediated signaling in frog melanophores. J Biol Chem 275(34):26322–26327

    Article  CAS  PubMed  Google Scholar 

  43. Riobo NA, Saucy B, Dilizio C, Manning DR (2006) Activation of heterotrimeric G proteins by smoothened. Proc Natl Acad Sci USA 103(33):12607–12612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shen F, Cheng L, Douglas AE, Riobo NA, Manning DR (2013) Smoothened is a fully competent activator of the heterotrimeric G protein G(i). Mol Pharmacol 83(3):691–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xia R, Jia H, Fan J, Liu Y, Jia J (2012) USP8 promotes smoothened signaling by preventing its ubiquitination and changing its subcellular localization. PLoS Biol 10(1):e1001238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huangfu D, Anderson KV (2005) Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci USA 102(32):11325–11330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. May SR, Ashique AM, Karlen M, Wang B, Shen Y, Zarbalis K, Reiter J, Ericson J, Peterson AS (2005) Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev Biol 287(2):378–389

    Article  CAS  PubMed  Google Scholar 

  48. Chen Y, Sasai N, Ma G, Yue T, Jia J, Briscoe J, Jiang J (2011) Sonic Hedgehog dependent phosphorylation by CK1α and GRK2 is required for ciliary accumulation and activation of smoothened. PLoS Biol 9(6):e1001083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kuwabara PE, Labouesse M (2002) The sterol-sensing domain: multiple families, a unique role? Trends Genet 18(4):193–201

    Article  CAS  PubMed  Google Scholar 

  50. Taipale J, Cooper MK, Maiti T, Beachy PA (2002) Patched acts catalytically to suppress the activity of Smoothened. Nature 418(6900):892–897

    Article  CAS  PubMed  Google Scholar 

  51. Chen JK, Taipale J, Young KE, Maiti T, Beachy PA (2002) Small molecule modulation of smoothened activity. Proc Natl Acad Sci USA 99(22):14071–14076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sharpe HJ, Wang W, Hannoush RN, de Sauvage FJ (2015) Regulation of the oncoprotein Smoothened by small molecules. Nat Chem Biol 11(4):246–255

    Article  CAS  PubMed  Google Scholar 

  53. Martín V, Carrillo G, Torroja C, Guerrero I (2001) The sterol-sensing domain of patched protein seems to control smoothened activity through patched vesicular trafficking. Curr Biol CB 11(8):601–607

    Article  PubMed  Google Scholar 

  54. Cooper AF, Yu KP, Brueckner M, Brailey LL, Johnson L, McGrath JM, Bale AE (2005) Cardiac and CNS defects in a mouse with targeted disruption of suppressor of fused. Development 132(19):4407–4417

    Article  CAS  PubMed  Google Scholar 

  55. Corcoran RB, Scott MP (2006) Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc Natl Acad Sci USA 103(22):8408–8413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Callejo A, Culi J, Guerrero I (2008) Patched, the receptor of Hedgehog, is a lipoprotein receptor. Proc Natl Acad Sci USA 105(3):912–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Khaliullina H, Panáková D, Eugster C, Riedel F, Carvalho M, Eaton S (2009) Patched regulates Smoothened trafficking using lipoprotein-derived lipids. Development 136(24):4111–4121

    Article  CAS  PubMed  Google Scholar 

  58. Dwyer JR, Sever N, Carlson M, Nelson SF, Beachy PA, Parhami F (2007) Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells. J Biol Chem 282(12):8959–8968

    Article  CAS  PubMed  Google Scholar 

  59. Bijlsma MF, Spek CA, Zivkovic D, van de Water S, Rezaee F, Peppelenbosch MP (2006) Repression of smoothened by patched-dependent (pro-)vitamin D3 secretion. PLoS Biol 4(8):e232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. DeLuca HF (2004) Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 80(6 Suppl):1689S–1696S

    CAS  PubMed  Google Scholar 

  61. Rohatgi R, Milenkovic L, Corcoran RB, Scott MP (2009) Hedgehog signal transduction by Smoothened: pharmacologic evidence for a 2-step activation process. Proc Natl Acad Sci USA 106(9):3196–3201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim J, Kato M, Beachy PA (2009) Gli2 trafficking links Hedgehog-dependent activation of Smoothened in the primary cilium to transcriptional activation in the nucleus. Proc Natl Acad Sci USA 106(51):21666–21671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ocbina PJR, Anderson KV (2008) Intraflagellar transport, cilia, and mammalian Hedgehog signaling: analysis in mouse embryonic fibroblasts. Dev Dyn 237(8):2030–2038

    Article  PubMed  PubMed Central  Google Scholar 

  64. Vuolo L, Herrera A, Torroba B, Menendez A, Pons S (2015) Ciliary adenylyl cyclases control the Hedgehog pathway. J Cell Sci 128:2928–2937

    Article  CAS  PubMed  Google Scholar 

  65. Varjosalo M, Li S-P, Taipale J (2006) Divergence of hedgehog signal transduction mechanism between Drosophila and mammals. Dev Cell 10(2):177–186

    Article  CAS  PubMed  Google Scholar 

  66. Nedelcu D, Liu J, Xu Y, Jao C, Salic A (2013) Oxysterol binding to the extracellular domain of smoothened in Hedgehog signaling. Nat Chem Biol 9(9):557–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim J, Hsia EYC, Brigui A, Plessis A, Beachy PA, Zheng X (2015) The role of ciliary trafficking in Hedgehog receptor signaling. Sci Signal 8(379):55

  68. Dijkgraaf GJP, Alicke B, Weinmann L, Januario T, West K, Modrusan Z, Burdick D, Goldsmith R, Robarge K, Sutherlin D, Scales SJ, Gould SE, Yauch RL, de Sauvage FJ (2011) Small molecule inhibition of GDC-0449 refractory smoothened mutants and downstream mechanisms of drug resistance. Cancer Res 71(2):435–444

    Article  CAS  PubMed  Google Scholar 

  69. Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L, Scott MP, Beachy PA (2000) Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406(6799):1005–1009

    Article  CAS  PubMed  Google Scholar 

  70. Tao H, Jin Q, Koo D-I, Liao X, Englund NP, Wang Y, Ramamurthy A, Schultz PG, Dorsch M, Kelleher J, Wu X (2011) Small molecule antagonists in distinct binding modes inhibit drug-resistant mutant of smoothened. Chem Biol 18(4):432–437

    Article  CAS  PubMed  Google Scholar 

  71. Cooper MK, Wassif CA, Krakowiak PA, Taipale J, Gong R, Kelley RI, Porter FD, Beachy PA (2003) A defective response to Hedgehog signaling in disorders of cholesterol biosynthesis. Nat Genet 33(4):508–513

    Article  CAS  PubMed  Google Scholar 

  72. Rohatgi R, Milenkovic L, Scott MP (2007) Patched1 regulates hedgehog signaling at the primary cilium. Science 317(5836):372–376

  73. Milenkovic L, Weiss LE, Yoon J, Roth TL, Su YS, Sahl SJ, Scott MP, Moerner WE (2015) Single-molecule imaging of Hedgehog pathway protein Smoothened in primary cilia reveals binding events regulated by Patched1. Proc Natl Acad Sci USA 112(27):8320–8325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gill S, Chow R, Brown AJ (2008) Sterol regulators of cholesterol homeostasis and beyond: the oxysterol hypothesis revisited and revised. Prog Lipid Res 47(6):391–404

    Article  CAS  PubMed  Google Scholar 

  75. Riobó NA, Lu K, Ai X, Haines GM, Emerson CP (2006) Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc Natl Acad Sci USA 103(12):4505–4510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Buonamici S, Williams J, Morrissey M, Wang A, Guo R, Vattay A, Hsiao K, Yuan J, Green J, Ospina B, Yu Q, Ostrom L, Fordjour P, Anderson DL, Monahan JE, Kelleher JF, Peukert S, Pan S, Wu X, Maira SM, García-Echeverría C, Briggs KJ, Watkins DN, Yao Y, Lengauer C, Warmuth M, Sellers WR, Dorsch M (2010) Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci Transl Med 2(51):51ra70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Chen W, Ren X-R, Nelson CD, Barak LS, Chen JK, Beachy PA, de Sauvage F, Lefkowitz RJ (2004) Activity-dependent internalization of smoothened mediated by beta-arrestin 2 and GRK2. Science 306(5705):2257–2260

    Article  CAS  PubMed  Google Scholar 

  78. Shenoy SK, Lefkowitz RJ (2005) Seven-transmembrane receptor signaling through beta-arrestin. Sci STKE 2005(308):cm10

    PubMed  Google Scholar 

  79. Wade F, Espagne A, Persuy M-A, Vidic J, Monnerie R, Merola F, Pajot-Augy E, Sanz G (2011) Relationship between homo-oligomerization of a mammalian olfactory receptor and its activation state demonstrated by bioluminescence resonance energy transfer. J Biol Chem 286(17):15252–15259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Masdeu C, Faure H, Coulombe J, Schoenfelder A, Mann A, Brabet I, Pin J-P, Traiffort E, Ruat M (2006) Identification and characterization of Hedgehog modulator properties after functional coupling of Smoothened to G15. Biochem Biophys Res Commun 349(2):471–479

    Article  CAS  PubMed  Google Scholar 

  81. Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK (2005) Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 1(4):e53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Chen Y, Yue S, Xie L, Pu XH, Jin T, Cheng SY (2011) Dual phosphorylation of suppressor of fused (Sufu) by PKA and GSK3 regulates its stability and localization in the primary cilium. J Biol Chem 286(15):13502–13511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fiol CJ, Mahrenholz AM, Wang Y, Roeske RW, Roach PJ (1987) Formation of protein kinase recognition sites by covalent modification of the substrate. Molecular mechanism for the synergistic action of casein kinase II and glycogen synthase kinase 3. J Biol Chem 262(29):14042–14048

    CAS  PubMed  Google Scholar 

  84. Barzi M, Berenguer J, Menendez A, Alvarez-Rodriguez R, Pons S (2010) Sonic-hedgehog-mediated proliferation requires the localization of PKA to the cilium base. J Cell Sci 123(Pt 1):62–69

    Article  CAS  PubMed  Google Scholar 

  85. Liu J, Zeng H, Liu A (2015) The loss of Hh responsiveness by a non-ciliary Gli2 variant. Development 142:1651–1660

    Article  CAS  PubMed  Google Scholar 

  86. Niewiadomski P, Kong JH, Ahrends R, Ma Y, Humke EW, Khan S, Teruel MN, Novitch BG, Rohatgi R (2014) Gli protein activity is controlled by multisite phosphorylation in vertebrate Hedgehog signaling. Cell Rep 6(1):168–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pan Y, Wang C, Wang B (2009) Phosphorylation of Gli2 by protein kinase A is required for Gli2 processing and degradation and the Sonic Hedgehog-regulated mouse development. Dev Biol 326(1):177–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shi Q, Li S, Li S, Jiang A, Chen Y, Jiang J (2014) Hedgehog-induced phosphorylation by CK1 sustains the activity of Ci/Gli activator. Proc Natl Acad Sci USA 111:E5651–E5660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kise Y, Morinaka A, Teglund S, Miki H (2009) Sufu recruits GSK3beta for efficient processing of Gli3. Biochem Biophys Res Commun 387(3):569–574

    Article  CAS  PubMed  Google Scholar 

  90. Zeng H, Jia J, Liu A (2010) Coordinated translocation of mammalian Gli proteins and suppressor of fused to the primary cilium. PLoS One 5(12):e15900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wen X, Lai CK, Evangelista M, Hongo J-A, de Sauvage FJ, Scales SJ (2010) Kinetics of hedgehog-dependent full-length Gli3 accumulation in primary cilia and subsequent degradation. Mol Cell Biol 30(8):1910–1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Epstein DJ, Marti E, Scott MP, McMahon AP (1996) Antagonizing cAMP-dependent protein kinase A in the dorsal CNS activates a conserved Sonic hedgehog signaling pathway. Development 122(9):2885–2894

    CAS  PubMed  Google Scholar 

  93. Fan CM, Porter JA, Chiang C, Chang DT, Beachy PA, Tessier-Lavigne M (1995) Long-range sclerotome induction by sonic hedgehog: direct role of the amino-terminal cleavage product and modulation by the cyclic AMP signaling pathway. Cell 81(3):457–465

    Article  CAS  PubMed  Google Scholar 

  94. Hammerschmidt M, Bitgood MJ, McMahon AP (1996) Protein kinase A is a common negative regulator of Hedgehog signaling in the vertebrate embryo. Genes Dev 10(6):647–658

    Article  CAS  PubMed  Google Scholar 

  95. Ungar AR, Moon RT (1996) Inhibition of protein kinase A phenocopies ectopic expression of hedgehog in the CNS of wild-type and cyclops mutant embryos. Dev Biol 178(1):186–191

    Article  CAS  PubMed  Google Scholar 

  96. Javelaud D, Pierrat M-J, Mauviel A (2012) Crosstalk between TGF-β and hedgehog signaling in cancer. FEBS Lett 586(14):2016–2025

    Article  CAS  PubMed  Google Scholar 

  97. Niewiadomski P, Zhujiang A, Youssef M, Waschek JA (2013) Interaction of PACAP with Sonic hedgehog reveals complex regulation of the hedgehog pathway by PKA. Cell Signal 25(11):2222–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ayers KL, Thérond PP (2010) Evaluating Smoothened as a G-protein-coupled receptor for Hedgehog signalling. Trends Cell Biol 20(5):287–298

    Article  CAS  PubMed  Google Scholar 

  99. Svärd J, Heby-Henricson K, Henricson KH, Persson-Lek M, Rozell B, Lauth M, Bergström A, Ericson J, Toftgård R, Teglund S (2006) Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev Cell 10(2):187–197

    Article  PubMed  CAS  Google Scholar 

  100. Cheng SY, Bishop JM (2002) Suppressor of Fused represses Gli-mediated transcription by recruiting the SAP18-mSin3 corepressor complex. Proc Natl Acad Sci USA 99(8):5442–5447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kogerman P, Grimm T, Kogerman L, Krause D, Undén AB, Sandstedt B, Toftgård R, Zaphiropoulos PG (1999) Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol 1(5):312–319

    Article  CAS  PubMed  Google Scholar 

  102. Merchant M, Vajdos FF, Ultsch M, Maun HR, Wendt U, Cannon J, Desmarais W, Lazarus RA, de Vos AM, de Sauvage FJ (2004) Suppressor of fused regulates Gli activity through a dual binding mechanism. Mol Cell Biol 24(19):8627–8641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Paces-Fessy M, Boucher D, Petit E, Paute-Briand S, Blanchet-Tournier M-F (2004) The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins. Biochem J 378(Pt 2):353–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen M-H, Wilson CW, Li Y-J, Lo Law KK, Lu C-S, Gacayan R, Zhang X, Hui C, Chuang P-T (2009) Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev 23(16):1910–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jia J, Kolterud A, Zeng H, Hoover A, Teglund S, Toftgård R, Liu A (2009) Suppressor of Fused inhibits mammalian Hedgehog signaling in the absence of cilia. Dev Biol 330(2):452–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pearse RV, Collier LS, Scott MP, Tabin CJ (1999) Vertebrate homologs of Drosophila suppressor of fused interact with the gli family of transcriptional regulators. Dev Biol 212(2):323–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Barnfield PC, Zhang X, Thanabalasingham V, Yoshida M, Hui C (2005) Negative regulation of Gli1 and Gli2 activator function by Suppressor of fused through multiple mechanisms. Differentiation 73(8):397–405

    Article  CAS  PubMed  Google Scholar 

  108. Oosterveen T, Kurdija S, Alekseenko Z, Uhde CW, Bergsland M, Sandberg M, Andersson E, Dias JM, Muhr J, Ericson J (2012) Mechanistic differences in the transcriptional interpretation of local and long-range Shh morphogen signaling. Dev Cell 23(5):1006–1019

    Article  CAS  PubMed  Google Scholar 

  109. Peterson KA, Nishi Y, Ma W, Vedenko A, Shokri L, Zhang X, McFarlane M, Baizabal J-M, Junker JP, van Oudenaarden A, Mikkelsen T, Bernstein BE, Bailey TL, Bulyk ML, Wong WH, McMahon AP (2012) Neural-specific Sox2 input and differential Gli-binding affinity provide context and positional information in Shh-directed neural patterning. Genes Dev 26(24):2802–2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang C, Pan Y, Wang B (2010) Suppressor of fused and Spop regulate the stability, processing and function of Gli2 and Gli3 full-length activators but not their repressors. Development 137(12):2001–2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bai CB, Stephen D, Joyner AL (2004) All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Dev Cell 6(1):103–115

    Article  CAS  PubMed  Google Scholar 

  112. Persson M, Stamataki D, te Welscher P, Andersson E, Böse J, Rüther U, Ericson J, Briscoe J (2002) Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. Genes Dev 16(22):2865–2878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Stone DM, Murone M, Luoh S, Ye W, Armanini MP, Gurney A, Phillips H, Brush J, Goddard A, de Sauvage FJ, Rosenthal A (1999) Characterization of the human suppressor of fused, a negative regulator of the zinc-finger transcription factor {Gli}. J Cell Sci 112(Pt 2):4437–4448

    CAS  PubMed  Google Scholar 

  114. Dessaud E, Yang LL, Hill K, Cox B, Ulloa F, Ribeiro A, Mynett A, Novitch BG, Briscoe J (2007) Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450(7170):717–720

    Article  CAS  PubMed  Google Scholar 

  115. Jeong J, McMahon AP (2005) Growth and pattern of the mammalian neural tube are governed by partially overlapping feedback activities of the hedgehog antagonists patched 1 and {Hhip}1. Development 132(1):143–154

    Article  CAS  PubMed  Google Scholar 

  116. Cherry AL, Finta C, Karlström M, Jin Q, Schwend T, Astorga-Wells J, Zubarev RA, Del Campo M, Criswell AR, de Sanctis D, Jovine L, Toftgård R (2013) Structural basis of SUFU-GLI interaction in human Hedgehog signalling regulation. Acta Crystallogr D Biol Crystallogr 69(Pt 12):2563–2579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang Y, Fu L, Qi X, Zhang Z, Xia Y, Jia J, Jiang J, Zhao Y, Wu G (2013) Structural insight into the mutual recognition and regulation between Suppressor of Fused and Gli/Ci. Nat Commun 4:2608

    PubMed  Google Scholar 

  118. Cheng SY, Yue S (2008) Role and regulation of human tumor suppressor SUFU in Hedgehog signaling. Adv Cancer Res 101:29–43

    Article  CAS  PubMed  Google Scholar 

  119. Kelley RL, Roessler E, Hennekam RC, Feldman GL, Kosaki K, Jones MC, Palumbos JC, Muenke M (1996) Holoprosencephaly in RSH/Smith-Lemli-Opitz syndrome: does abnormal cholesterol metabolism affect the function of Sonic Hedgehog? Am J Med Genet 66(4):478–484

    Article  CAS  PubMed  Google Scholar 

  120. Incardona JP, Roelink H (2000) The role of cholesterol in Shh signaling and teratogen-induced holoprosencephaly. Cell Mol Life Sci 57(12):1709–1719

    Article  CAS  PubMed  Google Scholar 

  121. Incardona JP, Lee JH, Robertson CP, Enga K, Kapur RP, Roelink H (2000) Receptor-mediated endocytosis of soluble and membrane-tethered Sonic hedgehog by Patched-1. Proc Natl Acad Sci USA 97(22):12044–12049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lin C, Yao E, Wang K, Nozawa Y, Shimizu H, Johnson JR, Chen JN, Krogan NJ, Chuang PT (2014) Regulation of Sufu activity by p66β and Mycbp provides new insight into vertebrate Hedgehog signaling. Genes Dev 28(22):2547-2563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

I thank Drs A. H. Monsoro-Burq and P. Thérond for critical reading of the manuscript. This work was supported by the French Centre National pour la Recherche Scientifique (CNRS), Association pour la Recherche contre le Cancer (ARC, PJA 20131200185) and Agence Nationale pour la Recherche, Programme Blanc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Gorojankina.

Ethics declarations

Conflict of interest

The author declares no competing or financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorojankina, T. Hedgehog signaling pathway: a novel model and molecular mechanisms of signal transduction. Cell. Mol. Life Sci. 73, 1317–1332 (2016). https://doi.org/10.1007/s00018-015-2127-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2127-4

Keywords

Navigation