Skip to main content

Advertisement

Log in

Neuroprotective Effect of Piclamilast-Induced Post-Ischemia Pharmacological Treatment in Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Various studies have evidenced the neuroprotective role of PDE4 inhibitors. However, whether PDE4 inhibitor, Piclamilast pharmacological post-treatment is protective during cerebral ischemia reperfusion-induced injury remains unknown. Therefore, this study design included testing the hypothesis that Piclamilast administered at the beginning of a reperfusion phase (Piclamilast pPost-trt) shows protective effects and explores & probes underlying downstream mechanisms. Swiss albino male mice were subjected to global ischemic and reperfusion injury for 17 min. The animals examined cerebral infarct size, biochemical parameters, inflammatory mediators, and motor coordination. For memory, assessment mice were subjected to morris water maze (MWM) and elevated plus maze (EPM) test. Histological changes were assessed using HE staining. Piclamilast pPost-trt significantly reduced I/R injury-induced deleterious effects on biochemical parameters of oxidative stress, inflammatory parameters, infarct size, and histopathological changes, according to the findings. These neuroprotective effects of pPost-trt are significantly abolished by pre-treatment with selective CREB inhibitor, 666–15. Current study concluded that induced neuroprotective benefits of Piclamilast Post-trt, in all probability, maybe mediated through CREB activation. Hence, its neuroprotective effects can be further explored in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article. There are no separate or additional files.

References

  1. Global Health Estimates. Geneva: World Health Organization (2012). Available from: http://www.who.int/healthinfo/global_burden_disease/en/.

  2. Schaller B, Graf R (2004) Cerebral ischemia and reperfusion: the pathophysiologic concept as a basis for clinical therapy. J Cereb Blood Flow Metab 24(4):351–371

    Article  PubMed  Google Scholar 

  3. Buchholz B, Donato M, D’Annunzio V, Gelpi RJ (2014) Ischemic postconditioning: mechanisms, comorbidities, and clinical application. Mol Cell Biochem 392(1):1–2

    Article  CAS  PubMed  Google Scholar 

  4. Khan H, Kashyap A, Kaur A, Singh TG (2020) Pharmacological postconditioning: a molecular aspect in ischemic injury. J Pharm Pharmacol 72(11):1513–1527

    Article  CAS  PubMed  Google Scholar 

  5. Penna C, Mancardi D, Rastaldo R, Losano G, Pagliaro P (2007) Intermittent activation of bradykinin B2 receptors and mitochondrial KATP channels trigger cardiac postconditioning through redox signaling. Cardiovasc Res 75(1):168–177

    Article  CAS  PubMed  Google Scholar 

  6. Tissier R, Waintraub X, Couvreur N, Gervais M, Bruneval P, Mandet C, Zini R, Enriquez B, Berdeaux A, Ghaleh B (2007) Pharmacological postconditioning with the phytoestrogen genistein. J Mol Cell Cardiol 42(1):79–87

    Article  CAS  PubMed  Google Scholar 

  7. Khan H, Singh A, Thapa K, Garg N, Grewal AK, Singh TG (2021) Therapeutic modulation of the phosphatidylinositol 3-kinases (PI3K) pathway in cerebral ischemic injury. Brain Res 1761:147399

    Article  CAS  Google Scholar 

  8. Hein M, Zoremba N, Bleilevens C, Bruells C, Rossaint R, Roehl AB (2013) Levosimendan limits reperfusion injury in a rat middle cerebral artery occlusion (MCAO) model. BMC Neurol 13(1):1–8

    Article  CAS  Google Scholar 

  9. Penna C, Perrelli MG, Tullio F, Angotti C, Camporeale A, Poli V, Pagliaro P (2013) Diazoxide postconditioning induces mitochondrial protein S-Nitrosylation and a redox-sensitive mitochondrial phosphorylation/translocation of RISK elements: no role for SAFE. Basic Res Cardiol 108(5):371

    Article  CAS  PubMed  Google Scholar 

  10. Bouhidel JO, Wang P, Li Q, Cai H (2014) Pharmacological postconditioning treatment of myocardial infarction with netrin-1. Front Biosci (Landmark edition) 19:566

    Article  CAS  Google Scholar 

  11. Toyoda T, Tosaka S, Tosaka R, Maekawa T, Cho S, Eguchi S, Nakashima M, Sumikawa K (2014) Milrinone-induced postconditioning reduces hepatic ischemia-reperfusion injury in rats: the roles of phosphatidylinositol 3-kinase and nitric oxide. J Surg Res 186(1):446–451

    Article  CAS  PubMed  Google Scholar 

  12. Wu Y, Wan J, Zhen WZ, Chen LF, Zhan J, Ke JJ, Zhang ZZ, Wang YL (2014) The effect of butorphanol postconditioning on myocardial ischaemia reperfusion injury in rats. Interact Cardiovasc Thorac Surg 18(3):308–312

    Article  PubMed  Google Scholar 

  13. Grewal AK, Singh N, Singh TG (2019) Neuroprotective effect of pharmacological postconditioning on cerebral ischaemia–reperfusion-induced injury in mice. J Pharm Pharmacol 71(6):956–970

    Article  CAS  PubMed  Google Scholar 

  14. Grewal AK, Singh N, Singh TG (2019) Effects of resveratrol postconditioning on cerebral ischemia in mice: role of the sirtuin-1 pathway. Can J Physiol Pharmacol 97(11):1094–1101

    Article  CAS  PubMed  Google Scholar 

  15. Daicheng H, Shiwen X, Huaping Z, Yong L, Qianqian Z, Changxia H (2018) Fangchinoline ameliorates the expressions of angiogenic molecule in cerebral ischemia induced neuronal degeneration in neonatal rats. Transl Neurosci 9(1):117–122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chen YC, Hsu WL, Ma YL, Tai DJ, Lee EH (2014) CREB SUMOylation by the E3 ligase PIAS1 enhances spatial memory. J Neurosci 34(29):9574–9589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ortega-Martínez S (2015) A new perspective on the role of the CREB family of transcription factors in memory consolidation via adult hippocampal neurogenesis. Front Mol Neurosci 8:46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Pugazhenthi S, Wang M, Pham S, Sze CI, Eckman CB (2011) Downregulation of CREB expression in Alzheimer’s brain and in Aβ-treated rat hippocampal neurons. Mol Neurodegener 6(1):1–16

    Article  CAS  Google Scholar 

  19. Andersson M, Konradi C, Cenci MA (2001) cAMP response element-binding protein is required for dopamine-dependent gene expression in the intact but not the dopamine-denervated striatum. J Neurosci 21(24):9930–9943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Choi YS, Lee B, Cho HY, Reyes IB, Pu XA, Saido TC, Hoyt KR, Obrietan K (2009) CREB is a key regulator of striatal vulnerability in chemical and genetic models of Huntington’s disease. Neurobiol Dis 36(2):259–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oger S, Méhats C, Dallot E, Cabrol D, Leroy MJ (2005) Evidence for a role of phosphodiesterase 4 in lipopolysaccharide-stimulated prostaglandin E2 production and matrix metalloproteinase-9 activity in human amniochorionic membranes. J Immunol 174(12):8082–8089

    Article  CAS  PubMed  Google Scholar 

  22. Baumer W, Hoppmann J, Rundfeldt C, Kietzmann M (2007) Highly selective phosphodiesterase 4 inhibitors for the treatment of allergic skin diseases and psoriasis. Inflamm Allergy Drug Targets 6(1):17–26

    Article  PubMed  Google Scholar 

  23. Richter W, Menniti FS, Zhang HT, Conti M (2013) PDE4 as a target for cognition enhancement. Expert Opin Ther Targets 17(9):1011–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang H, Hong Q, Tan HL, Xiao CR, Gao Y (2016) Ferulic acid prevents LPS-induced up-regulation of PDE4B and stimulates the cAMP/CREB signaling pathway in PC12 cells. Acta Pharmacol Sin 37(12):1543–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li J, Li L, Wang S, Zhang C, Zheng L, Jia Y, Xu M, Zhu T, Zhang Y, Rong R (2018) Resveratrol alleviates inflammatory responses and oxidative stress in rat kidney ischemia-reperfusion injury and H2O2-induced NRK-52E cells via the Nrf2/TLR4/NF-κB pathway. Cell Physiol Biochem 45(4):1677–1689

    Article  CAS  PubMed  Google Scholar 

  26. Norio H, Hiroshi W, Nobuhide A, Mitsue K, Jiro I, Yushiro T (1990) Cerebral ischemia model with conscious mice: involvement of NMDA receptor activation and derangement of learning and memory ability. J Pharmacol Methods 23(4):311–327

    Article  Google Scholar 

  27. Schallert T, Kozlowski DA, Humm JL, Cocke RR (1997) Use-dependent structural events in recovery of function. Adv Neurol 73:229–238

    CAS  PubMed  Google Scholar 

  28. Itoh J, Nabeshima T, Kameyama T (1990) Utility of an elevated plus-maze for the evaluation of memory in mice: effects of nootropics, scopolamine and electroconvulsive shock. Psychopharmacol 101(1):27–33

    Article  CAS  Google Scholar 

  29. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

    Article  CAS  PubMed  Google Scholar 

  30. Shri R, Bora KS (2008) Neuroprotective effect of methanolic extracts of Allium cepa on ischemia and reperfusion-induced cerebral injury. Fitoterapia 79(2):86–96

    Article  PubMed  Google Scholar 

  31. Sheehan DC, Hrapchak BB (1980) Connective tissue and muscle fiber stains. Theory and practice of histotechnology 180–201

  32. Ellman M (1959) A spectrophotometric method for determination of reduced glutathione in tissues. Anal Biochem 74:214–226

    Google Scholar 

  33. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175

    Article  CAS  PubMed  Google Scholar 

  34. Goth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196:143–151

    Article  CAS  PubMed  Google Scholar 

  35. Grisham MB, Gaginella TS, von Ritter C, Tamai H, Robert MB, Granger DN (1990) Effects of neutrophil-derived oxidants on intestinal permeability, electrolyte transport, and epithelial cell viability. Inflammation 14(5):531–542

    Article  CAS  PubMed  Google Scholar 

  36. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95

    Article  CAS  PubMed  Google Scholar 

  37. Kahles T, Luedike P, Endres M, Galla HJ, Steinmetz H, Busse R, Neumann-Haefelin T, Brandes RP (2007) NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke 38(11):3000–3006

    Article  CAS  PubMed  Google Scholar 

  38. Ponten U, Ratcheson RA, Salford LG, Siesjö BK (1973) Optimal freezing conditions for cerebral metabolites in rats. J Neurochem 21(5):1127–1138

    Article  CAS  PubMed  Google Scholar 

  39. Aşcı S, Demirci S, Aşcı H, Doğuç DK, Onaran İ (2016) Neuroprotective effects of pregabalin on cerebral ischemia and reperfusion. Balkan Med J 33(2):221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. de Vries DK, Kortekaas KA, Tsikas D, Wijermars LG, van Noorden CJ, Suchy MT, Cobbaert CM, Klautz RJ, Schaapherder AF, Lindeman JH (2013) Oxidative damage in clinical ischemia/reperfusion injury: a reappraisal. Antioxid Redox Sign 19(6):535–545

    Article  CAS  Google Scholar 

  41. Akhtar M, Pillai KK, Vohora D (2008) Effect of thioperamide on oxidative stress markers in middle cerebral artery occlusion model of focal cerebral ischemia in rats. Hum Exp Toxicol 27(10):761–767

    Article  CAS  PubMed  Google Scholar 

  42. Kim G, Kim E (2013) Effects of treadmill training on limb motor function and acetylcholinesterase activity in rats with stroke. J Phys Ther Sci 25(10):1227–1230

    Article  PubMed  PubMed Central  Google Scholar 

  43. Milatovic D, Gupta RC, Aschner M (2006) Anticholinesterase toxicity and oxidative stress. The Sci World J 6:295–310

    Article  CAS  Google Scholar 

  44. Melo JB, Agostinho P, Oliveira CR (2003) Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide. Neurosci Res 45(1):117–127

    Article  CAS  PubMed  Google Scholar 

  45. Abdalla FH, Cardoso AM, Pereira LB, Schmatz R, Gonçalves JF, Stefanello N, Fiorenza AM, Gutierres JM, da Silva Serres JD, Zanini D, Pimentel VC (2013) Neuroprotective effect of quercetin in ectoenzymes and acetylcholinesterase activities in cerebral cortex synaptosomes of cadmium-exposed rats. Mol Cell Biochem 381(1):1–8

    Article  CAS  PubMed  Google Scholar 

  46. Daemen MA, Wolfs TG, Buurman WA (1999) Ischemia/reperfusion-induced IFN-γ up-regulation: involvement of IL-12 and IL-18. J Immunol 162(9):5506–5510

    CAS  PubMed  Google Scholar 

  47. Khan H, Gupta A, Singh TG, Kaur A (2021) Mechanistic insight on the role of leukotriene receptors in ischemic–reperfusion injury. Pharmacol Rep 73:1240–1254

    Article  CAS  PubMed  Google Scholar 

  48. Chalouhi N, Jabbour P, Magnotta V, Hasan D (2014) Molecular imaging of cerebrovascular lesions. Transl Stroke Res 5(2):260–268

    Article  CAS  PubMed  Google Scholar 

  49. Román GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, Amaducci L, Orgogozo JM, Brun A, Hofman A, Moody DM (1993) Vascular dementia: diagnostic criteria for research studies: report of the NINDS-AIREN International Workshop. J Neurol 43(2):250–250

    Google Scholar 

  50. Schimidt HL, Vieira A, Altermann C, Martins A, Sosa P, Santos FW, Mello-Carpes PB, Izquierdo I, Carpes FP (2014) Memory deficits and oxidative stress in cerebral ischemia–reperfusion: neuroprotective role of physical exercise and green tea supplementation. Neurobiol Learn Mem 114:242–250

    Article  CAS  PubMed  Google Scholar 

  51. Barrionuevo G, Brown TH (1983) Associative long-term potentiation in hippocampal slices. Proc Natl Acad Sci 80(23):7347–7351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Joshi CN, Jain SK, Murthy PS (2004) An optimized triphenyltetrazolium chloride method for identification of cerebral infarcts. Brain Res Prot 13(1):11–17

    Article  CAS  Google Scholar 

  53. Bochelen D, Rudin M, Sauter A (1999) Calcineurin inhibitors FK506 and SDZ ASM 981 alleviate the outcome of focal cerebral ischemic/reperfusion injury. J Pharmacol Exp Ther 288(2):653–659

    CAS  PubMed  Google Scholar 

  54. Moshfegh A, Setorki M (2017) Neuroprotective effect of matricaria chamomilla extract on motor dysfunction induced by transient global cerebral ischemia and reperfusion in rat Zahedan. J Res Med Sci. https://doi.org/10.5812/zjrms.10927

    Article  Google Scholar 

  55. Grewal AK, Jaggi AS, Rana AC, Singh N (2013) Effect of neurosteroid modulation on global ischaemia-reperfusion-induced cerebral injury in mice. The Korean J Physiol & Pharmacol 17(6):485–491

    Article  CAS  Google Scholar 

  56. Gulati P, Singh N (2014) Pharmacological evidence for connection of nitric oxide-mediated pathways in neuroprotective mechanism of ischemic postconditioning in mice. J Pharm Bioallied Sci 6(4):233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Reddy VD, Padmavathi P, Kavitha G, Saradamma B, Varadacharyulu N (2013) Alcohol-induced oxidative/nitrosative stress alters brain mitochondrial membrane properties. Mol Cell Biochem 375(1):39–47

    CAS  PubMed  Google Scholar 

  58. Gaur V, Kumar A (2012) Effect of nonselective and selective COX-2 inhibitors on memory dysfunction, glutathione system, and tumor necrosis factor alpha level against cerebral ischemia reperfusion injury. Drug Chem Toxicol 35(2):218–224

    Article  CAS  PubMed  Google Scholar 

  59. Ozerol E, Bilgic S, Iraz M, Cigli A, Ilhan A, Akyol O (2009) The protective effect of erdosteine on short-term global brain ischemia/reperfusion injury in rats. Prog Neuropsychopharmacol Biol Psychiatry 33(1):20–24

    Article  CAS  PubMed  Google Scholar 

  60. Gupta R, Singh M, Sharma A (2003) Neuroprotective effect of antioxidants on ischaemia and reperfusion-induced cerebral injury. Pharmacol Res 48(2):209–215

    Article  CAS  PubMed  Google Scholar 

  61. Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M (2013) Molecular mechanisms of ischemia–reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 47(1):9–23

    Article  CAS  PubMed  Google Scholar 

  62. Zhao ZQ, Vinten-Johansen J (2006) Postconditioning: reduction of reperfusion-induced injury. Cardiovasc Res 70(2):200–211

    Article  CAS  PubMed  Google Scholar 

  63. Jordan JE, Zhao ZQ, Vinten-Johansen J (1999) The role of neutrophils in myocardial ischemia–reperfusion injury. Cardiovasc Res 43(4):860–878

    Article  CAS  PubMed  Google Scholar 

  64. Hearse DJ, Bolli R (1991) Reperfusion induced injury: manifestations, mechanisms, and clinical relevance. Trends Cardiovasc Med 26(2):101–108

    Google Scholar 

  65. Forman MB, Virmani R, Puett DW (1990) Mechanisms and therapy of myocardial reperfusion injury. Circulation 81(3):69–78

    Google Scholar 

  66. Becker LC, Ambrosio G (1987) Myocardial consequences of reperfusion. Prog Cardiovasc Dis 30(1):23–44

    Article  CAS  PubMed  Google Scholar 

  67. Zhao H, Ren C, Chen X, Shen J (2010) From rapid to delayed and remote postconditioning: the evolving concept of ischemic postconditioning in brain ischemia. Curr Drug Targets 13(2):173–187

    Article  Google Scholar 

  68. Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, Heusch G, Vinten-Johansen J, Yellon DM, Schulz R (2010) Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the working group of cellular biology of the heart of the European society of cardiology. Cardiovasc Res 87(3):406–423

    Article  CAS  PubMed  Google Scholar 

  69. Andreadou I, Iliodromitis EK, Koufaki M, Kremastinos DT (2008) Pharmacological pre-and post-conditioning agents: reperfusion-injury of the heart revisited. Mini Rev Med Chem 8(9):952–959

    Article  CAS  PubMed  Google Scholar 

  70. Du DS, Ma XB, Zhang JF, Zhou XY, Li Y, Zhang YM, Qiao WL (2010) The protective effect of capsaicin receptor-mediated genistein postconditioning on gastric ischemia–reperfusion injury in rats. Dig Dis Sci 55(11):3070–3077

    Article  CAS  PubMed  Google Scholar 

  71. Goyal A, Kumar S, Nagpal M, Singh I, Arora S (2011) Potential of novel drug delivery systems for herbal drugs. Indian J Pharm Educ 45(3):225–235

    Google Scholar 

  72. Tong G, Sun Z, Wei X, Gu C, Kaye AD, Wang Y, Li J, Zhang Q, Guo H, Yu S, Yi D (2011) U50, 488H postconditioning reduces apoptosis after myocardial ischemia and reperfusion. J Life Sci 88(1–2):31–38

    Article  CAS  Google Scholar 

  73. Das S, Cordis GA, Maulik N, Das DK (2005) Pharmacological preconditioning with resveratrol: role of CREB-dependent Bcl-2 signaling via adenosine A3 receptor activation. Am J Physiol Heart Circ Physiol 288(1):H328–H335

    Article  CAS  PubMed  Google Scholar 

  74. Li K, Gong X, Kuang G, Jiang R, Wan J, Wang B (2016) Sesamin protects against renal ischemia reperfusion injury by promoting CD39-adenosine-A2AR signal pathway in mice. Am J Transl Res 8(5):2245

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhong Y, Zhu Y, He T, Li W, Yan H, Miao Y (2016) Rolipram-induced improvement of cognitive function correlates with changes in hippocampal CREB phosphorylation, BDNF and Arc protein levels. Neurosci Lett 610:171–176

    Article  CAS  PubMed  Google Scholar 

  76. Kwak HJ, Park KM, Choi HE, Chung KS, Lim HJ, Park HY (2008) PDE4 inhibitor, roflumilast protects cardiomyocytes against NO-induced apoptosis via activation of PKA and Epac dual pathways. Cell Signal 20(5):803–814

    Article  PubMed  Google Scholar 

  77. Chen J, Yu H, Zhong J, Feng H, Wang H, Cheng Y, Zou Z, Huang C, Zhou Z, Zheng W, Xu J (2018) The phosphodiesterase-4 inhibitor, FCPR16, attenuates ischemia-reperfusion injury in rats subjected to middle cerebral artery occlusion and reperfusion. Brain Res Bull 137:98–106

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Chitkara College of Pharmacy, Chitkara University, Punjab, India for providing the necessary facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Contributions

Amarjot Kaur: AK Thakur Gurjeet Singh: TGS, Heena Khan: HK, Manish Kumar: MN. Conceptualization: AK & TGS, Performed the experiments: AK & HK. Analyzed the data: TGS & MN, Review & editing: AK, NS, TGS & MMAD, Critically reviewed the article: TGS, All authors read and approved the final manuscript. All data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Thakur Gurjeet Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests. All authors read and approved the final manuscript.

Ethical Approval

The experimental protocol was conducted and approved as per the guidelines of the Institutional Animal Ethics Committee (IAEC) under registration number: 1181/PO/ReBi/S/08/CPCSEA and the guidelines of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Ministry of Environment and Forests, Government of India were followed.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Singh, T.G., Khan, H. et al. Neuroprotective Effect of Piclamilast-Induced Post-Ischemia Pharmacological Treatment in Mice. Neurochem Res 47, 2230–2243 (2022). https://doi.org/10.1007/s11064-022-03609-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03609-w

Keywords

Navigation