Skip to main content

Advertisement

Log in

Neuroprotective effect of quercetin in ectoenzymes and acetylcholinesterase activities in cerebral cortex synaptosomes of cadmium-exposed rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This study investigated the effect of quercetin on nucleoside triphosphate diphosphohydrolase (NTPDase), 5′-nucleotidase, adenosine deaminase (ADA), and acetylcholinesterase (AChE) activities in synaptosomes from cerebral cortex of adult rats exposed to cadmium (Cd). Rats were exposed to Cd (2.5 mg/Kg) and quercetin (5, 25 or 50 mg/Kg) by gavage for 45 days. Rats were randomly divided into eight groups (n = 8–10): saline/ethanol, saline/Querc 5 mg/kg, saline/Querc 25 mg/kg, saline/Querc 50 mg/kg, Cd/ethanol, Cd/Querc 5 mg/kg, Cd/Querc 25 mg/kg, and Cd/Querc 50 mg/kg. Results demonstrated that AChE activity increased in the Cd/ethanol group when compared to saline/ethanol group. Treatment with quercetin prevented the increase in AChE activity when compared to Cd/ethanol group. Quercetin treatment prevented the cadmium-induced increase in NTPDase, 5-nucleotidase, and ADA activities in Cd/ethanol group when compared to saline/ethanol group. Our data showed that quercetin have a protector effect against Cd intoxication. This way, is a promising candidate among the flavonoids to be investigated as a therapeutic agent to attenuate neurological disorders associated with Cd intoxication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Thevenod F (2003) Nephrotoxicity and the proximal tubule. Insights from cadmium. Nephron Physiol 93:p87–p93. doi:70241

    Article  PubMed  CAS  Google Scholar 

  2. Jarup L, Berglund M, Elinder CG, Nordberg G, Vahter M (1998) Health effects of cadmium exposure-a review of the literature and a risk estimate. Scand J Work Environ Health 24(Suppl 1):1–51

    PubMed  Google Scholar 

  3. Sugita M (1978) The biological half-time of heavy metals. The existence of a third, “slowest” component. Int Arch Occup Environ Health 41:25–40

    Article  PubMed  CAS  Google Scholar 

  4. Noonan CW, Sarasua SM, Campagna D, Kathman SJ, Lybarger JA, Mueller PW (2002) Effects of exposure to low levels of environmental cadmium on renal biomarkers. Environ Health Perspect 110:151–155

    Article  PubMed  CAS  Google Scholar 

  5. Eybl V, Kotyzova D, Leseticky L, Bludovska M, Koutensky J (2006) The influence of curcumin and manganese complex of curcumin on cadmium-induced oxidative damage and trace elements status in tissues of mice. J Appl Toxicol 26:207–212. doi:10.1002/jat.1124

    Article  PubMed  CAS  Google Scholar 

  6. Eybl V, Kotyzova D, Koutensky J, Mickova V, Jones MM, Singh PK (1998) Effect of cadmium chelating agents on organ cadmium and trace element levels in mice. Analyst 123:25–26

    Article  PubMed  CAS  Google Scholar 

  7. Sinha M, Manna P, Sil PC (2009) Induction of necrosis in cadmium-induced hepatic oxidative stress and its prevention by the prophylactic properties of taurine. J Trace Elem Med Biol 23:300–313. doi:10.1016/j.jtemb.2009.03.010

    Article  PubMed  CAS  Google Scholar 

  8. Veranian OA, Volkova NA, Karpliuk IA (1989) The effect of cadmium on the body under conditions of various protein content in the diet. Vopr Pitan 2:33–37

    PubMed  Google Scholar 

  9. Antonio MT, Corredor L, Leret ML (2003) Study of the activity of several brain enzymes like markers of the neurotoxicity induced by perinatal exposure to lead and/or cadmium. Toxicol Lett 143:331–340

    Article  PubMed  CAS  Google Scholar 

  10. Leret ML, Millan JA, Antonio MT (2003) Perinatal exposure to lead and cadmium affects anxiety-like behaviour. Toxicology 186:125–130

    Article  PubMed  CAS  Google Scholar 

  11. Yargiçoglu P, Agar A, Oguz Y, Izgüt-Uysal V, Sentürk Ü, Öner G (1997) The effect of developmental exposure to cadmium (Cd) on visual evoked potentials (VEPs) and lipid peroxidation. Neurotoxicol Teratol 19:213–219

    Article  PubMed  Google Scholar 

  12. Mendez-Armenta M, Barroso-Moguel R, Villeda-Hernandez J, Nava-Ruiz C, Rios C (2001) Histopathological alterations in the brain regions of rats after perinatal combined treatment with cadmium and dexamethasone. Toxicology 161:189–199

    Article  PubMed  CAS  Google Scholar 

  13. Mendez-Armenta M, Villeda-Hernandez J, Barroso-Moguel R, Nava-Ruiz C, Jimenez-Capdeville ME, Rios C (2003) Brain regional lipid peroxidation and metallothionein levels of developing rats exposed to cadmium and dexamethasone. Toxicol Lett 144:151–157

    Article  PubMed  CAS  Google Scholar 

  14. Provias JP, Ackerley CA, Smith C, Becker LE (1994) Cadmium encephalopathy: a report with elemental analysis and pathological findings. Acta Neuropathol 88:583–586

    Article  PubMed  CAS  Google Scholar 

  15. Carageorgiou H, Tzotzes V, Pantos C, Mourouzis C, Zarros A, Tsakiris S (2004) In vivo and in vitro effects of cadmium on adult rat brain total antioxidant status, acetylcholinesterase, (Na+, K+)-ATPase and Mg2+-ATPase activities: protection by l-cysteine. Basic Clin Pharmacol Toxicol 94:112–118

    Article  PubMed  CAS  Google Scholar 

  16. Luchese C, Brandao R, de Oliveira R, Nogueira CW, Santos FW (2007) Efficacy of diphenyl diselenide against cerebral and pulmonary damage induced by cadmium in mice. Toxicol Lett 173:181–190. doi:10.1016/j.toxlet.2007.07.011

    Article  PubMed  CAS  Google Scholar 

  17. Pari L, Murugavel P (2007) Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats. Toxicology 234:44–50. doi:10.1016/j.tox.2007.01.021

    Article  PubMed  CAS  Google Scholar 

  18. Goncalves JF, Fiorenza AM, Spanevello RM, Mazzanti CM, Bochi GV, Antes FG, Stefanello N, Rubin MA, Dressler VL, Morsch VM, Schetinger MR (2010) N-acetylcysteine prevents memory deficits, the decrease in acetylcholinesterase activity and oxidative stress in rats exposed to cadmium. Chem Biol Interact 186:53–60. doi:10.1016/j.cbi.2010.04.011

    Article  PubMed  CAS  Google Scholar 

  19. Goncalves JF, Nicoloso FT, da Costa P, Farias JG, Carvalho FB, da Rosa MM, Gutierres JM, Abdalla FH, Pereira JS, Dias GR, Barbosa NB, Dressler VL, Rubin MA, Morsch VM, Schetinger MR (2012) Behavior and brain enzymatic changes after long-term intoxication with cadmium salt or contaminated potatoes. Food Chem Toxicol 50:3709–3718. doi:10.1016/j.fct.2012.07.016

    Article  PubMed  CAS  Google Scholar 

  20. Kiehn O (2006) Locomotor circuits in the mammalian spinal cord. Annu Rev Neurosci 29:279–306. doi:10.1146/annurev.neuro.29.051605.112910

    Article  PubMed  CAS  Google Scholar 

  21. Mesulam MM, Guillozet A, Shaw P, Levey A, Duysen EG, Lockridge O (2002) Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience 110:627–639

    Article  PubMed  CAS  Google Scholar 

  22. Spanevello RM, Mazzanti CM, Bagatini M, Correa M, Schmatz R, Stefanello N, Thome G, Morsch VM, Becker L, Belle L, de Oliveira L, Schetinger MR (2010) Activities of the enzymes that hydrolyze adenine nucleotides in platelets from multiple sclerosis patients. J Neurol 257:24–30. doi:10.1007/s00415-009-5258-4

    Article  PubMed  CAS  Google Scholar 

  23. Desi I, Nagymajtenyi L, Schulz H (1998) Behavioural and neurotoxicological changes caused by cadmium treatment of rats during development. J Appl Toxicol 18:63–70

    Article  PubMed  CAS  Google Scholar 

  24. Kawashima K, Fujii T (2003) The lymphocytic cholinergic system and its contribution to the regulation of immune activity. Life Sci 74:675–696

    Article  PubMed  CAS  Google Scholar 

  25. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067. doi:10.1152/physrev.00015.2002

    PubMed  CAS  Google Scholar 

  26. Hunsucker SA, Mitchell BS, Spychala J (2005) The 5′-nucleotidases as regulators of nucleotide and drug metabolism. Pharmacol Ther 107:1–30. doi:10.1016/j.pharmthera.2005.01.003

    Article  PubMed  CAS  Google Scholar 

  27. Yegutkin G, Henttinen T, Samburski S, Spychala J, Jalkanen S (2002) The evidence for two opposite, ATP-generating and ATP-consuming, extracellular pathways on endothelial and lymphoid cells. Biochem J 367:121–128. doi:10.1042/BJ20020439

    Article  PubMed  CAS  Google Scholar 

  28. Schetinger MR, Morsch VM, Bonan CD, Wyse AT (2007) NTPDase and 5′-nucleotidase activities in physiological and disease conditions: new perspectives for human health. BioFactors 31:77–98

    Article  PubMed  CAS  Google Scholar 

  29. Schetinger MR, Vieira VL, Morsch VM, Balz D (2001) ATP and ADP hydrolysis in fish, chicken and rat synaptosomes. Comp Biochem Physiol B: Biochem Mol Biol 128:731–741

    Article  CAS  Google Scholar 

  30. Schmatz R, Mazzanti CM, Spanevello R, Stefanello N, Gutierres J, Maldonado PA, Correa M, da Rosa CS, Becker L, Bagatini M, Goncalves JF, Jaques Jdos S, Schetinger MR, Morsch VM (2009) Ectonucleotidase and acetylcholinesterase activities in synaptosomes from the cerebral cortex of streptozotocin-induced diabetic rats and treated with resveratrol. Brain Res Bull 80:371–376. doi:10.1016/j.brainresbull.2009.08.019

    Article  PubMed  CAS  Google Scholar 

  31. Mazzanti CM, Spanevello RM, Morsch A, Zanin R, Battisti V, Ahmed M, Goncalves JF, Mazzanti A, Graca DL, Morsch VM, Schetinger MR (2007) Previous treatment with ebselen and vitamin E alters adenine nucleotide hydrolysis in platelets from adult rats experimentally demyelinated with ethidium bromide. Life Sci 81:241–248. doi:10.1016/j.lfs.2007.05.008

    Article  PubMed  CAS  Google Scholar 

  32. Spanevello RM, Mazzanti CM, Schmatz R, Thome G, Bagatini M, Correa M, Rosa C, Stefanello N, Belle LP, Moretto MB, Oliveira L, Morsch VM, Schetinger MR (2010) The activity and expression of NTPDase is altered in lymphocytes of multiple sclerosis patients. Clin Chim Acta 411:210–214. doi:10.1016/j.cca.2009.11.005

    Article  PubMed  CAS  Google Scholar 

  33. Zanini D, Schmatz R, Pimentel VC, Gutierres JM, Maldonado PA, Thome GR, Cardoso AM, Stefanello N, Oliveira L, Chiesa J, Leal DB, Morsch VM, Schetinger MR (2012) Lung cancer alters the hydrolysis of nucleotides and nucleosides in platelets. Biomed Pharmacother 66:40–45. doi:10.1016/j.biopha.2011.09.003

    Article  PubMed  CAS  Google Scholar 

  34. Kaizer RR, Gutierres JM, Schmatz R, Spanevello RM, Morsch VM, Schetinger MR, Rocha JB (2010) In vitro and in vivo interactions of aluminum on NTPDase and AChE activities in lymphocytes of rats. Cell Immunol 265:133–138. doi:10.1016/j.cellimm.2010.08.001

    Article  PubMed  CAS  Google Scholar 

  35. Goncalves JF, Duarte MM, Fiorenza AM, Spanevello RM, Mazzanti CM, Schmatz R, Bagatini MD, Antes FG, Costa P, Abdalla FH, Dressler VL, Morsch VM, Schetinger MR (2012) Hematological indices and activity of NTPDase and cholinesterase enzymes in rats exposed to cadmium and treated with N-acetylcysteine. Biometals 25:1195–1206. doi:10.1007/s10534-012-9582-2

    Article  PubMed  CAS  Google Scholar 

  36. Rikans LE, Yamano T (2000) Mechanisms of cadmium-mediated acute hepatotoxicity. J Biochem Mol Toxicol 14:110–117

    Article  PubMed  CAS  Google Scholar 

  37. Galan A, Troyano A, Vilaboa NE, Fernandez C, de Blas E, Aller P (2001) Modulation of the stress response during apoptosis and necrosis induction in cadmium-treated U-937 human promonocytic cells. Biochim Biophys Acta 1538:38–46

    Article  PubMed  CAS  Google Scholar 

  38. Sampson L, Rimm E, Hollman PC, de Vries JH, Katan MB (2002) Flavonol and flavone intakes in US health professionals. J Am Diet Assoc 102:1414–1420

    Article  PubMed  Google Scholar 

  39. Ishisaka A, Ichikawa S, Sakakibara H, Piskula MK, Nakamura T, Kato Y, Ito M, Miyamoto K, Tsuji A, Kawai Y, Terao J (2011) Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radic Biol Med 51:1329–1336. doi:10.1016/j.freeradbiomed.2011.06.017

    Article  PubMed  CAS  Google Scholar 

  40. Dajas F (2012) Life or death: neuroprotective and anticancer effects of quercetin. J Ethnopharmacol 143:383–396. doi:10.1016/j.jep.2012.07.005

    Article  PubMed  CAS  Google Scholar 

  41. Zalups R, Ahmad S (2003) Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharmacol 186:163–188

    Article  PubMed  CAS  Google Scholar 

  42. Lu J, Zheng YL, Luo L, Wu DM, Sun DX, Feng YJ (2006) Quercetin reverses D-galactose induced neurotoxicity in mouse brain. Behav Brain Res 171:251–260. doi:10.1016/j.bbr.2006.03.043

    Article  PubMed  CAS  Google Scholar 

  43. Pu F, Mishima K, Irie K, Motohashi K, Tanaka Y, Orito K, Egawa T, Kitamura Y, Egashira N, Iwasaki K, Fujiwara M (2007) Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats. J Pharmacol Sci 104:329–334

    Article  PubMed  CAS  Google Scholar 

  44. Nagy A, Delgado-Escueta A (1984) Rapid preparation of synaptosomes from mammalian brain using nontoxic isoosmotic gradient material (Percoll). J Neurochem 43:1114–1123

    Article  PubMed  CAS  Google Scholar 

  45. Ellman G, Courtney K, Andres VJ, Feather-Stone R (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  46. Rocha JB, Emanuelli T, Pereira ME (1993) Effects of early undernutrition on kinetic parameters of brain acetylcholinesterase from adult rats. Acta Neurobiol Exp (Wars) 53:431–437

    CAS  Google Scholar 

  47. Schetinger M, Porto N, Moretto M, Morsch V, da Rocha J, Vieira V, Moro F, Neis R, Bittencourt S, Bonacorso H, Zanatta N (2000) New benzodiazepines alter acetylcholinesterase and ATPDase activities. Neurochem Res 25:949–955

    Article  PubMed  CAS  Google Scholar 

  48. Heymann D, Reddington M, Kreutzberg G (1984) Subcellular localization of 5′-nucleotidase in rat brain. J Neurochem 43:971–978

    Article  PubMed  CAS  Google Scholar 

  49. Chan K, Delfert D, Junger K (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380

    Article  PubMed  CAS  Google Scholar 

  50. Giusti G, Gakis C (1971) Temperature conversion factors, activation energy, relative substrate specificity and optimum pH of adenosine deaminase from human serum and tissues. Enzyme 12:417–425

    PubMed  CAS  Google Scholar 

  51. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  52. Senger MR, Rosemberg DB, Rico EP, de Bem Arizi M, Dias RD, Bogo MR, Bonan CD (2006) In vitro effect of zinc and cadmium on acetylcholinesterase and ectonucleotidase activities in zebrafish (Danio rerio) brain. Toxicol In Vitro 20:954–958. doi:10.1016/j.tiv.2005.12.002

    Article  PubMed  CAS  Google Scholar 

  53. Bigonnesse F, Levesque SA, Kukulski F, Lecka J, Robson SC, Fernandes MJ, Sevigny J (2004) Cloning and characterization of mouse nucleoside triphosphate diphosphohydrolase-8. Biochemistry 43:5511–5519. doi:10.1021/bi0362222

    Article  PubMed  CAS  Google Scholar 

  54. Vorhoff T, Zimmermann H, Pelletier J, Sevigny J, Braun N (2005) Cloning and characterization of the ecto-nucleotidase NTPDase3 from rat brain: predicted secondary structure and relation to other members of the E-NTPDase family and actin. Purinergic Signal 1:259–270. doi:10.1007/s11302-005-6314-x

    Article  PubMed  CAS  Google Scholar 

  55. Massoulie J, Sussman J, Bon S, Silman I (1993) Structure and functions of acetylcholinesterase and butyrylcholinesterase. Prog Brain Res 98:139–146

    Article  PubMed  CAS  Google Scholar 

  56. Fasitsas CD, Theocharis SE, Zoulas D, Chrissimou S, Deliconstantinos G (1991) Time-dependent cadmium-neurotoxicity in rat brain synaptosomal plasma membranes. Comp Biochem Physiol C 100:271–275

    Article  PubMed  CAS  Google Scholar 

  57. Carageorgiou H, Tzotzes V, Sideris A, Zarros A, Tsakiris S (2005) Cadmium effects on brain acetylcholinesterase activity and antioxidant status of adult rats: modulation by zinc, calcium and l-cysteine co-administration. Basic Clin Pharmacol Toxicol 97:320–324. doi:10.1111/j.1742-7843.2005.pto_174.x

    Article  PubMed  CAS  Google Scholar 

  58. Shukla A, Shukla GS, Srimal RC (1996) Cadmium-induced alterations in blood-brain barrier permeability and its possible correlation with decreased microvessel antioxidant potential in rat. Hum Exp Toxicol 15:400–405

    Article  PubMed  CAS  Google Scholar 

  59. Hasko G, Cronstein BN (2004) Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25:33–39

    Article  PubMed  CAS  Google Scholar 

  60. Rathbone MP, Middlemiss PJ, Gysbers JW, Andrew C, Herman MA, Reed JK, Ciccarelli R, Di Iorio P, Caciagli F (1999) Trophic effects of purines in neurons and glial cells. Prog Neurobiol 59:663–690

    Article  PubMed  CAS  Google Scholar 

  61. Sperlagh B, Kittel A, Lajtha A, Vizi ES (1995) ATP acts as fast neurotransmitter in rat habenula: neurochemical and enzymecytochemical evidence. Neuroscience 66:915–920

    Article  PubMed  CAS  Google Scholar 

  62. Burnstock G (2006) Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci 27:166–176. doi:10.1016/j.tips.2006.01.005

    Article  PubMed  CAS  Google Scholar 

  63. Cunha RA, Ribeiro JA (2000) ATP as a presynaptic modulator. Life Sci 68:119–137

    Article  PubMed  CAS  Google Scholar 

  64. Beraudi A, Traversa U, Villani L, Sekino Y, Nagy JI, Poli A (2003) Distribution and expression of A1 adenosine receptors, adenosine deaminase and adenosine deaminase-binding protein (CD26) in goldfish brain. Neurochem Int 42:455–464

    Article  PubMed  CAS  Google Scholar 

  65. Desrosiers MD, Cembrola KM, Fakir MJ, Stephens LA, Jama FM, Shameli A, Mehal WZ, Santamaria P, Shi Y (2007) Adenosine deamination sustains dendritic cell activation in inflammation. J Immunol 179:1884–1892

    PubMed  CAS  Google Scholar 

  66. Sitkovsky MV, Ohta A (2005) The ‘danger’ sensors that STOP the immune response: the A2 adenosine receptors? Trends Immunol 26:299–304. doi:10.1016/j.it.2005.04.004

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Coordenação e Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Federal University of Santa Maria, RS, Brazil, and the FINEP research grant “Rede Instituto Brasileiro de Neurociências (IBNet)”.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fátima Husein Abdalla or Cinthia Melazzo Mazzanti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdalla, F.H., Cardoso, A.M., Pereira, L.B. et al. Neuroprotective effect of quercetin in ectoenzymes and acetylcholinesterase activities in cerebral cortex synaptosomes of cadmium-exposed rats. Mol Cell Biochem 381, 1–8 (2013). https://doi.org/10.1007/s11010-013-1659-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1659-x

Keywords

Navigation