Skip to main content

Advertisement

Log in

Biological role and regulation of circular RNA as an emerging biomarker and potential therapeutic target for cancer

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Circular RNAs (circRNAs) are a unique family of endogenous RNAs devoid of 3′ poly-A tails and 5′ end caps. These single-stranded circRNAs, found in the cytoplasm, are synthesized via back-splicing mechanisms, merging introns, exons, or both, resulting in covalently closed circular loops. They are profusely expressed across the eukaryotic transcriptome and offer heightened stability against exonuclease RNase R compared to linear RNA counterparts. This review endeavors to provide a comprehensive overview of circRNAs’ characteristics, biogenesis, and mechanisms of action. Furthermore, aimed to shed light on the potential of circRNAs as significant biomarkers in various cancer types. It has been performed an exhaustive literature review, drawing on recent studies and findings related to circRNA characteristics, synthesis, function, evaluation techniques, and their associations with oncogenesis. CircRNAs are intricately associated with tumor progression and development. Their multifaceted roles encompass gene regulation through the sponging of proteins and microRNAs, controlling transcription and splicing, interacting with RNA binding proteins (RBPs), and facilitating gene translation. Due to these varied roles, circRNAs have become a focal point in tumor pathology investigations, given their promising potential as both biomarkers and therapeutic agents. CircRNAs, due to their unique biogenesis and multifunctionality, hold immense promise in the realm of oncology. Their stability, widespread expression, and intricate involvement in gene regulation underscore their prospective utility as reliable biomarkers and therapeutic targets in cancer. As our understanding of circRNAs deepens, advanced techniques for their detection, evaluation, and manipulation will likely emerge. These advancements might catalyze the translation of circRNA-based diagnostics and therapeutics into clinical practice, potentially revolutionizing cancer care and prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

ALS:

Amyotrophic lateral sclerosis

ANKRD52:

Ankyrin repeat domain 52

BWA-MEM:

Burrow-wheeler aligner’s maximal exact match

CDR1as:

Cerebellar degeneration-related protein 1 antisense

ceRNA:

Competitive endogenous RNA

CDK2:

Cyclin-dependent kinase 2

circRNA:

Circular RNA

circ-Foxo3:

Circular RNA forkhead box O3

circHIPK3:

Circular RNA homeodomain-interacting protein kinase 3

circ-MBL:

Circular muscleblind

circMTO1:

Circular RNA mitochondrial tRNA translation optimization 1

circ-ZNF609:

Circular RNA zinc finger protein 609

CIRI:

Circular RNA identifier

CSCD:

Cancer-specific circRNA database

EIciRNAs:

Exon–intron circRNAs

IRES:

Internal ribosome entry site

KNIFE:

Known and novel isoform explorer

MREs:

MiRNA response elements

miRNA:

MicroRNA

ncRNAs:

Non-coding RNA

NCLScan:

Non-co-linear transcripts scan

PTESFinder:

Post-transcriptional exon shuffling finder

RBPs:

RNA binding proteins

RPAD:

RNase R protocol accompanied by poly (A) + RNA depletion and polyadenylation

TDP-43:

TAR DNA-binding protein 43

TSCD:

Tissue-specific CircRNA database

References

  1. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci 73(11):3852–3856

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu W, Ji P, Zhao F (2020) CircAtlas: an integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol 21(1):1–14

    Article  Google Scholar 

  4. Kristensen L, Andersen M, Stagsted L, Ebbesen K, Hansen T, Kjems J (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20(11):675–691

    Article  CAS  PubMed  Google Scholar 

  5. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7(2):e30733

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barrett SP, Salzman J (2016) Circular RNAs: analysis, expression and potential functions. Development 143(11):1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Han D, Li J, Wang H, Su X, Hou J, Gu Y et al (2017) Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology 66(4):1151–1164

    Article  CAS  PubMed  Google Scholar 

  8. Chen LL, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12(4):381–388

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  9. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Xiao J (2018) Circular RNAs: biogenesis and functions. Springer, Singapore

    Google Scholar 

  11. Wilusz J, Sharp PJS (2013) A circuitous route to noncoding RNA NIH public access. Science 340:440–441

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang A, Zheng H, Wu Z, Chen M, Huang Y (2020) Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics 10(8):3503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu J, Zhang X, Yan M, Li H (2020) Emerging role of circular RNAs in cancer. Front Oncol 10:663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang R, Zhang Y, Han B, Bai Y, Zhou R, Gan G et al (2017) Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124–2HG. Autophagy 13(10):1722–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bach DH, Lee SK, Sood AK (2019) Circular RNAs in cancer. Mol Therap Nucleic Acids 16:118–129

    Article  CAS  Google Scholar 

  16. Guo JU, Agarwal V, Guo H, Bartel DP (2014) Expanded identification and characterization of mammalian circular RNAs. Genom Biol 15(7):1–14

    Article  CAS  Google Scholar 

  17. Zhu J, Yu Y, Meng X, Fan Y, Zhang Y, Zhou C et al (2013) De novo-generated small palindromes are characteristic of amplicon boundary junction of double minutes. Int J Cancer 133(4):797–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20(12):1829–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hayes M, Li J (2015) An integrative framework for the identification of double minute chromosomes using next generation sequencing data. BMC Genet 16(2):1–7

    Article  Google Scholar 

  20. Tan S, Gou Q, Pu W, Guo C, Yang Y, Wu K et al (2018) Circular RNA F-circEA produced from EML4-ALK fusion gene as a novel liquid biopsy biomarker for non-small cell lung cancer. Cell Res 28(6):693–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9(9):e1003777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44(6):2846–2858

    Article  PubMed  PubMed Central  Google Scholar 

  23. Preußer C, Hung LH, Schneider T, Schreiner S, Hardt M, Moebus A et al (2018) Selective release of circRNAs in platelet-derived extracellular vesicles. J Extracell Vesicles 7(1):1424473

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66

    Article  CAS  PubMed  Google Scholar 

  25. Zhu LP, He YJ, Hou JC, Chen X, Zhou SY, Yang SJ et al (2017) The role of circRNAs in cancers. Biosci Rep. https://doi.org/10.1042/BSR20170750

  26. Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P et al (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9(5):1966–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17(4):205–211

    Article  CAS  PubMed  Google Scholar 

  28. Shen T, Han M, Wei G, Ni T (2015) An intriguing RNA species—perspectives of circularized RNA. Protein Cell 6(12):871–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J et al (2016) Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res 26(9):1277–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA et al (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160(6):1125–1134

    Article  CAS  PubMed  Google Scholar 

  31. Tang X, Ren H, Guo M, Qian J, Yang Y, Gu C et al (2021) Review on circular RNAs and new insights into their roles in cancer. Cell 19:910–928

    CAS  Google Scholar 

  32. Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L (2014) Complementary sequence-mediated exon circularization. Cell 159(1):134–147

    Article  CAS  PubMed  Google Scholar 

  33. Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR et al (2015) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10(2):170–177

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806

    Article  CAS  PubMed  Google Scholar 

  35. Kelly S, Greenman C, Cook PR, Papantonis A (2015) Exon skipping is correlated with exon circularization. J Mol Biol 427(15):2414–2417

    Article  CAS  PubMed  Google Scholar 

  36. Ebert MS, Sharp PA (2010) MicroRNA sponges: progress and possibilities. RNA 16(11):2043–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A et al (2017) Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357(6357):8526

    Article  Google Scholar 

  39. Kohlhapp FJ, Mitra AK, Lengyel E, Peter ME (2015) MicroRNAs as mediators and communicators between cancer cells and the tumor microenvironment. Oncogene 34(48):5857–5868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao J, He S, Minassian A, Li J, Feng P (2015) Recent advances on viral manipulation of NF-κB signaling pathway. Curr Opin Virol 15:103–111

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hansen TB, Kjems J, Damgaard CK (2013) Circular RNA and miR-7 in CancerCircular RNA and miR-7 in Cancer. Cancer Res 73(18):5609–5612

    Article  CAS  PubMed  Google Scholar 

  42. Militello G, Weirick T, John D, Döring C, Dimmeler S, Uchida S (2017) Screening and validation of lncRNAs and circRNAs as miRNA sponges. Brief Bioinfo 18(5):780–788

    CAS  Google Scholar 

  43. Ikeda Y, Morikawa S, Nakashima M, Yoshikawa S, Taniguchi K, Sawamura H et al (2023) CircRNAs and RNA-binding proteins involved in the pathogenesis of cancers or central nervous system disorders. Noncoding RNA. https://doi.org/10.3390/ncrna9020023

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhao X, Zhong Y, Wang X, Shen J, An W (2022) Advances in circular RNA and its applications. Int J Med Sci 19(6):975–985. https://doi.org/10.7150/ijms.71840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zang J, Lu D, Xu A (2020) The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function. J Neurosci Res 98(1):87–97. https://doi.org/10.1002/jnr.24356

    Article  CAS  PubMed  Google Scholar 

  46. Wawrzyniak O, Zarębska Ż, Kuczyński K, Gotz-Więckowska A, Rolle K (2020) Protein-related circular RNAs in human pathologies. Cells. https://doi.org/10.3390/cells9081841

    Article  PubMed  PubMed Central  Google Scholar 

  47. Armakola M, Higgins MJ, Figley MD, Barmada SJ, Scarborough EA, Diaz Z et al (2012) Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat Genet 44(12):1302–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O et al (2017) Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66(1):22–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y et al (2017) Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 27(5):626–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L et al (2017) Translation of circRNAs. Mol Cell 66(1):9–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen L, Shan G (2021) CircRNA in cancer: Fundamental mechanism and clinical potential. Cancer Lett 505:49–57

    Article  CAS  PubMed  Google Scholar 

  52. Xiao W, Li J, Hu J, Wang L, Huang JR, Sethi G et al (2021) Circular RNAs in cell cycle regulation: Mechanisms to clinical significance. Cell Prolif 54(12):e13143. https://doi.org/10.1111/cpr.13143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang Y, Zhang C, Xiong J, Ren H (2021) Emerging important roles of circRNAs in human cancer and other diseases. Genes Dis 8(4):412–423. https://doi.org/10.1016/j.gendis.2020.07.012

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Y, Luo J, Yang W, Ye WC (2023) CircRNAs in colorectal cancer: potential biomarkers and therapeutic targets. Cell Death Dis 14(6):353. https://doi.org/10.1038/s41419-023-05881-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang F, Li L, Fan Z (2022) circRNAs and their relationship with breast cancer: a review. World J Surg Oncol 20(1):373. https://doi.org/10.1186/s12957-022-02842-5

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang N, Nan A, Chen L, Li X, Jia Y, Qiu M et al (2020) Circular RNA circSATB2 promotes progression of non-small cell lung cancer cells. Mol Cancer 19(1):101. https://doi.org/10.1186/s12943-020-01221-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhou Y, Mao X, Peng R, Bai D (2022) CircRNAs in hepatocellular carcinoma: characteristic, functions and clinical significance. Int J Med Sci 19(14):2033–2043. https://doi.org/10.7150/ijms.74713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tang K, Zhang H, Li Y, Sun Q, Jin H (2021) Circular RNA as a potential biomarker for melanoma: a systematic review. Front Cell Dev Biol 9:638548. https://doi.org/10.3389/fcell.2021.638548

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ng WL, Mohd Mohidin TB, Shukla K (2018) Functional role of circular RNAs in cancer development and progression. RNA Biol 15(8):995–1005. https://doi.org/10.1080/15476286.2018.1486659

    Article  PubMed  PubMed Central  Google Scholar 

  60. Riquelme I, Tapia O, Espinoza JA, Leal P, Buchegger K, Sandoval A et al (2016) The gene expression status of the PI3K/AKT/mTOR pathway in gastric cancer tissues and cell lines. Pathol Oncol Res 22(4):797–805. https://doi.org/10.1007/s12253-016-0066-5

    Article  CAS  PubMed  Google Scholar 

  61. Dou Z, Gao L, Ren W, Zhang H, Wang X, Li S et al (2020) CiRS-7 functions as a ceRNA of RAF-1/PIK3CD to promote metastatic progression of oral squamous cell carcinoma via MAPK/AKT signaling pathways. Exp Cell Res 396(2):112290. https://doi.org/10.1016/j.yexcr.2020.112290

    Article  CAS  PubMed  Google Scholar 

  62. Yang X, Li S, Wu Y, Ge F, Chen Y, Xiong Q (2020) The circular RNA CDR1as regulate cell proliferation via TMED2 and TMED10. BMC Cancer 20(1):312. https://doi.org/10.1186/s12885-020-06794-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jiang M, Fang S, Zhao X, Zhou C, Gong Z (2021) Epithelial-mesenchymal transition-related circular RNAs in lung carcinoma. Cancer Biol Med 18(2):411–420. https://doi.org/10.20892/j.issn.2095-3941.2020.0238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu Z, Yu X, Zhang S, He Y, Guo W (2022) Mechanism underlying circRNA dysregulation in the TME of digestive system cancer. Front Immunol. https://doi.org/10.3389/fimmu.2022.951561

    Article  PubMed  PubMed Central  Google Scholar 

  65. Shao Y, Lu B (2020) The crosstalk between circular RNAs and the tumor microenvironment in cancer metastasis. Cancer Cell Int 20:448. https://doi.org/10.1186/s12935-020-01532-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Begliarzade S, Sufianov A, Ilyasova T, Shumadalova A, Sufianov R, Beylerli O et al (2024) Circular RNA in cervical cancer: fundamental mechanism and clinical potential. Noncoding RNA Res 9(1):116–124. https://doi.org/10.1016/j.ncrna.2023.11.009

    Article  CAS  PubMed  Google Scholar 

  67. He AT, Liu J, Li F, Yang BB (2021) Targeting circular RNAs as a therapeutic approach: current strategies and challenges. Signal Transduct Target Ther 6(1):185. https://doi.org/10.1038/s41392-021-00569-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang F, Jiang J, Qian H, Yan Y, Xu W (2023) Exosomal circRNA: emerging insights into cancer progression and clinical application potential. J Hematol Oncol 16(1):67. https://doi.org/10.1186/s13045-023-01452-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dhuri K, Bechtold C, Quijano E, Pham H, Gupta A, Vikram A et al (2020) Antisense oligonucleotides: an emerging area in drug discovery and development. J Clin Med. https://doi.org/10.3390/jcm9062004

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zheng XB, Zhang M, Xu MQ (2017) Detection and characterization of ciRS-7: a potential promoter of the development of cancer. Neoplasma 64(3):321–328. https://doi.org/10.4149/neo_2017_301

    Article  CAS  PubMed  Google Scholar 

  71. Sharma AR, Bhattacharya M, Bhakta S, Saha A, Lee SS, Chakraborty C (2021) Recent research progress on circular RNAs: biogenesis, properties, functions, and therapeutic potential. Mol Ther Nucleic Acids 25:355–371. https://doi.org/10.1016/j.omtn.2021.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pisignano G, Michael DC, Visal TH, Pirlog R, Ladomery M, Calin GA (2023) Going circular: history, present, and future of circRNAs in cancer. Oncogene 42(38):2783–2800. https://doi.org/10.1038/s41388-023-02780-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jagtap U, Anderson ES, Slack FJ (2023) The emerging value of circular noncoding RNA research in cancer diagnosis and treatment. Cancer Res 83(6):809–813. https://doi.org/10.1158/0008-5472.Can-22-3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Memczak S, Papavasileiou P, Peters O, Rajewsky N (2015) Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS ONE 10(10):e0141214

    Article  PubMed  PubMed Central  Google Scholar 

  75. Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A, Mayeda A (2006) Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34(8):e63

    Article  PubMed  PubMed Central  Google Scholar 

  76. Qu S, Liu Z, Yang X, Zhou J, Yu H, Zhang R et al (2018) The emerging functions and roles of circular RNAs in cancer. Cancer Lett 414:301–309

    Article  CAS  PubMed  Google Scholar 

  77. Li J, Li Z, Jiang P, Peng M, Zhang X, Chen K et al (2018) Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis. J Exp Clin Cancer Res 37(1):1–16

    Article  CAS  Google Scholar 

  78. Bahn JH, Zhang Q, Li F, Chan TM, Lin X, Kim Y et al (2015) The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem 61(1):221–230

    Article  CAS  PubMed  Google Scholar 

  79. Wang R, Zhang S, Chen X, Li N, Li J, Jia R et al (2018) CircNT5E acts as a sponge of miR-422a to promote glioblastoma tumorigenesis. Cancer Res 78(17):4812–4825. https://doi.org/10.1158/0008-5472.Can-18-0532

    Article  CAS  PubMed  Google Scholar 

  80. Wang R, Zhang S, Chen X, Li N, Li J, Jia R et al (2018) EIF4A3-induced circular RNA MMP9 (circMMP9) acts as a sponge of miR-124 and promotes glioblastoma multiforme cell tumorigenesis. Mol Cancer 17(1):166. https://doi.org/10.1186/s12943-018-0911-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lei Y, Chen L, Zhang G, Shan A, Ye C, Liang B et al (2020) MicroRNAs target the Wnt/β-catenin signaling pathway to regulate epithelial-mesenchymal transition in cancer (Review). Oncol Rep 44(4):1299–1313. https://doi.org/10.3892/or.2020.7703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu W, Ma W, Yuan Y, Zhang Y, Sun S (2018) Circular RNA hsa_circRNA_103809 promotes lung cancer progression via facilitating ZNF121-dependent MYC expression by sequestering miR-4302. Biochem Biophys Res Commun 500(4):846–851. https://doi.org/10.1016/j.bbrc.2018.04.172

    Article  CAS  PubMed  Google Scholar 

  83. Chen L, Nan A, Zhang N, Jia Y, Li X, Ling Y et al (2019) Circular RNA 100146 functions as an oncogene through direct binding to miR-361-3p and miR-615-5p in non-small cell lung cancer. Mol Cancer 18(1):13. https://doi.org/10.1186/s12943-019-0943-0

    Article  PubMed  PubMed Central  Google Scholar 

  84. Tang H, Huang X, Wang J, Yang L, Kong Y, Gao G et al (2019) circKIF4A acts as a prognostic factor and mediator to regulate the progression of triple-negative breast cancer. Mol Cancer 18(1):23. https://doi.org/10.1186/s12943-019-0946-x

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z et al (2019) Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer 18(1):20. https://doi.org/10.1186/s12943-018-0935-5

    Article  PubMed  PubMed Central  Google Scholar 

  86. Li RC, Ke S, Meng FK, Lu J, Zou XJ, He ZG et al (2018) CiRS-7 promotes growth and metastasis of esophageal squamous cell carcinoma via regulation of miR-7/HOXB13. Cell Death Dis 9(8):838. https://doi.org/10.1038/s41419-018-0852-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xie F, Li Y, Wang M, Huang C, Tao D, Zheng F et al (2018) Circular RNA BCRC-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis. Mol Cancer 17(1):144. https://doi.org/10.1186/s12943-018-0892-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rao D, Yu C, Sheng J, Lv E, Huang W (2021) The emerging roles of circFOXO3 in cancer. Front Cell Dev Biol 9:659417. https://doi.org/10.3389/fcell.2021.659417

    Article  PubMed  PubMed Central  Google Scholar 

  89. Zhang L, Zhou Q, Qiu Q, Hou L, Wu M, Li J et al (2019) CircPLEKHM3 acts as a tumor suppressor through regulation of the miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis in ovarian cancer. Mol Cancer 18(1):144. https://doi.org/10.1186/s12943-019-1080-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tang Q, Hann SS (2020) Biological roles and mechanisms of circular RNA in human cancers. Onco Targets Therap 13:2067

    Article  CAS  Google Scholar 

  91. Ren W, Yuan Y, Peng J, Mutti L, Jiang X (2022) The function and clinical implication of circular RNAs in lung cancer. Front Oncol 12:862602. https://doi.org/10.3389/fonc.2022.862602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dai C, Liu B, Li S, Hong Y, Si J, Xiong Y et al (2021) Construction of a circRNA-miRNA-mRNA regulated pathway involved in EGFR-TKI lung adenocarcinoma resistance. Technol Cancer Res Treat 20:15330338211056808. https://doi.org/10.1177/15330338211056809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zepeda-Enríquez P, Silva-Cázares MB, López-Camarillo C (2023) Novel insights into circular RNAs in metastasis in breast cancer: an update. Noncoding RNA. https://doi.org/10.3390/ncrna9050055

    Article  PubMed  PubMed Central  Google Scholar 

  94. Li Z, Chen Z, Hu G, Jiang Y (2019) Roles of circular RNA in breast cancer: present and future. Am J Transl Res 11(7):3945–3954

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Gopikrishnan M, Hephzibah Cathryn R, Gnanasambandan R, Ashour HM, Pintus G, Hammad M et al (2023) Therapeutic and diagnostic applications of exosomal circRNAs in breast cancer. Funct Integr Genom 23(2):184. https://doi.org/10.1007/s10142-023-01083-3

    Article  CAS  Google Scholar 

  96. Li X, Shen M (2019) Circular RNA hsa_circ_103809 suppresses hepatocellular carcinoma proliferation and invasion by sponging miR-620. Eur Rev Med Pharmacol Sci 23(2):555–566. https://doi.org/10.26355/eurrev_201902_16868

    Article  CAS  PubMed  Google Scholar 

  97. Panda AC, De S, Grammatikakis I, Munk R, Yang X, Piao Y et al (2017) High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Res 45(12):e116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zeng X, Lin W, Guo M, Zou Q (2017) A comprehensive overview and evaluation of circular RNA detection tools. PLoS Comput Biol 13(6):e1005420

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  99. Jakobi T, Dieterich C (2019) Computational approaches for circular RNA analysis. Wiley Interdiscip Rev 10(3):e1528

    Article  Google Scholar 

  100. Hansen TB (2018) Improved circRNA identification by combining prediction algorithms. Front Cell Dev Biol 6:20

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  101. Chen I, Chen CY, Chuang TJ (2015) Biogenesis, identification, and function of exonic circular RNAs. Wiley Interdiscip Rev 6(5):563–579

    Article  CAS  Google Scholar 

  102. Meng X, Li X, Zhang P, Wang J, Zhou Y, Chen M (2017) Circular RNA: an emerging key player in RNA world. Brief Bioinfo 18(4):547–557

    CAS  Google Scholar 

  103. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(453):461

    Google Scholar 

  104. Li HJ (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Genomics. https://doi.org/10.48550/arXiv.1303.3997

    Article  PubMed  PubMed Central  Google Scholar 

  105. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    Article  CAS  PubMed  Google Scholar 

  106. Kim D, Salzberg S (2011) TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol 12:72

    Article  Google Scholar 

  107. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cheng J, Metge F, Dieterich C (2016) Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics 32(7):1094–1096

    Article  CAS  PubMed  Google Scholar 

  109. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Song X, Zhang N, Han P, Moon BS, Lai RK, Wang K et al (2016) Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res 44(9):e87

    Article  PubMed  PubMed Central  Google Scholar 

  111. Izuogu OG, Alhasan AA, Alafghani HM, Santibanez-Koref M, Elliott DJ, Jackson MS (2016) PTESFinder: a computational method to identify post-transcriptional exon shuffling (PTES) events. Nucleic Acids Res 17(1):1–11

    Google Scholar 

  112. Szabo L, Morey R, Palpant N, Wang P, Afari N, Jiang C, Parast MM, Murry CE, Laurent LC, Salzman J (2015) Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol 16:126

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gao Y, Wang J, Zhao F (2015) CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol 16(1):1–16

    Article  Google Scholar 

  114. Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL et al (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 38(18):e178

    Article  PubMed  PubMed Central  Google Scholar 

  115. Hoffmann S, Otto C, Doose G, Tanzer A, Langenberger D, Christ S et al (2014) A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection. Genome Biol 15(2):1–11

    Article  Google Scholar 

  116. Chuang TJ, Wu CS, Chen CY, Hung LY, Chiang TW, Yang MY (2016) NCLscan: accurate identification of non-co-linear transcripts (fusion, trans-splicing and circular RNA) with a good balance between sensitivity and precision. Nucleic Acids Res 44(3):e29

    Article  PubMed  Google Scholar 

  117. Chen B, Wei W, Huang X, Xie X, Kong Y, Dai D et al (2018) circEPSTI1 as a prognostic marker and mediator of triple-negative breast cancer progression. Theranostics 8(14):4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S et al (2017) Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol 14(3):361–369

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B et al (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:11215

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dudekula DB, Panda AC, Grammatikakis I, Supriya D, Abdelmohsen K, Gorospe M (2016) CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 13(1):34–42

    Article  PubMed  Google Scholar 

  121. Panda AC, Abdelmohsen K, Gorospe M (2017) RT-qPCR detection of senescence-associated circular RNAs. In: Nikiforov MA (ed) Oncogene-induced senescence. Springer, New York, pp 79–87

    Chapter  Google Scholar 

  122. Quan PL, Sauzade M, Brouzes EJS (2018) dPCR: a technology review. Sensors 18(4):1271

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  123. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ et al (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83(22):8604–8610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang Y, Wang Y, Su X, Wang P, Lin W (2021) The value of circulating circular RNA in cancer diagnosis, monitoring, prognosis, and guiding treatment. Front Oncol 11:736546. https://doi.org/10.3389/fonc.2021.736546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang S, Zhang K, Tan S, Xin J, Yuan Q, Xu H et al (2021) Circular RNAs in body fluids as cancer biomarkers: the new frontier of liquid biopsies. Mol Cancer 20(1):13. https://doi.org/10.1186/s12943-020-01298-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Xu CY, Zeng XX, Xu LF, Liu M, Zhang F (2022) Circular RNAs as diagnostic biomarkers for gastric cancer: a comprehensive update from emerging functions to clinical significances. Front Genet. https://doi.org/10.3389/fgene.2022.1037120

    Article  PubMed  PubMed Central  Google Scholar 

  127. Artemaki PI, Scorilas A, Kontos CK (2020) Circular RNAs: a new piece in the colorectal cancer puzzle. Cancers (Basel). https://doi.org/10.3390/cancers12092464

    Article  PubMed  PubMed Central  Google Scholar 

  128. De Palma FDE, Salvatore F, Pol JG, Kroemer G, Maiuri MC (2022) Circular RNAs as potential biomarkers in breast cancer. Biomedicines. https://doi.org/10.3390/biomedicines10030725

    Article  PubMed  PubMed Central  Google Scholar 

  129. Santini D, Botticelli A, Galvano A, Iuliani M, Incorvaia L, Gristina V et al (2023) Network approach in liquidomics landscape. J Exp Clin Cancer Res 42(1):193. https://doi.org/10.1186/s13046-023-02743-9

    Article  PubMed  PubMed Central  Google Scholar 

  130. Souza VGP, Forder A, Brockley LJ, Pewarchuk ME, Telkar N, de Araújo RP et al (2023) Liquid biopsy in lung cancer: biomarkers for the management of recurrence and metastasis. Int J Mol Sci 24(10):8894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Szczepaniak A, Bronisz A, Godlewski J (2023) Circular RNAs-new kids on the block in cancer pathophysiology and management. Cells. https://doi.org/10.3390/cells12040552

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lu K, Fan Q, Zou X (2022) Antisense oligonucleotide is a promising intervention for liver diseases. Front Pharmacol 13:1061842. https://doi.org/10.3389/fphar.2022.1061842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Li F, Yang Q, He AT, Yang BB (2021) Circular RNAs in cancer: limitations in functional studies and diagnostic potential. Semin Cancer Biol 75:49–61. https://doi.org/10.1016/j.semcancer.2020.10.002

    Article  CAS  PubMed  Google Scholar 

  134. Kristensen LS, Hansen TB, Venø MT, Kjems J (2018) Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37(5):555–565. https://doi.org/10.1038/onc.2017.361

    Article  CAS  PubMed  Google Scholar 

  135. Drula R, Braicu C, Chira S, Berindan-Neagoe I (2023) Investigating circular RNAs using qRT-PCR; roundup of optimization and processing steps. Int J Mol Sci 24(6):5721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gharib E, Nasrabadi PN, Robichaud GA (2023) Circular RNA expression signatures provide promising diagnostic and therapeutic biomarkers for chronic lymphocytic leukemia. Cancers (Basel). https://doi.org/10.3390/cancers15051554

    Article  PubMed  Google Scholar 

  137. Tang X, Ren H, Guo M, Qian J, Yang Y, Gu C (2021) Review on circular RNAs and new insights into their roles in cancer. Comput Struct Biotechnol J 19:910–928. https://doi.org/10.1016/j.csbj.2021.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Vromman M, Anckaert J, Bortoluzzi S, Buratin A, Chen CY, Chu Q et al (2023) Large-scale benchmarking of circRNA detection tools reveals large differences in sensitivity but not in precision. Nat Methods 20(8):1159–1169. https://doi.org/10.1038/s41592-023-01944-6

    Article  CAS  PubMed  Google Scholar 

  139. Cochran KR, Gorospe M, De S (2022) Bioinformatic Analysis of CircRNA from RNA-seq Datasets. Methods Mol Biol 2399:9–19. https://doi.org/10.1007/978-1-0716-1831-8_2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Dr. Irina Zamfir, MD, RCP London, Basildon University Hospital UK, for providing professional English editing of this manuscript and for editorial support.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis, and interpretation, or in all these areas that is, revising or critically reviewing the article; giving final approval of the version to be published; agreeing on the journal to which the article has been submitted; and confirming to be accountable for all aspects of the work. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Muhammad Umer Khan, Daniela Calina or Javad Sharifi-Rad.

Ethics declarations

Competing interests

The authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, A., Khan, M.U., Zahid, T. et al. Biological role and regulation of circular RNA as an emerging biomarker and potential therapeutic target for cancer. Mol Biol Rep 51, 296 (2024). https://doi.org/10.1007/s11033-024-09211-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09211-3

Keywords

Navigation