Skip to main content

Advertisement

Log in

The Gene Expression Status of the PI3K/AKT/mTOR Pathway in Gastric Cancer Tissues and Cell Lines

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

The PI3K/AKT/mTOR pathway plays a crucial role in the regulation of multiple cellular functions including cell growth, proliferation, metabolism and angiogenesis. Emerging evidence has shown that deregulation of this pathway has a role promoting gastric cancer (GC). The aim was to assess the expression of genes involved in this pathway by qPCR in 23 tumor and 23 non-tumor gastric mucosa samples from advanced GC patients, and in AGS, MKN28 and MKN45 gastric cancer cell lines. Results showed a slight overexpression of PIK3CA, PIK3CB, AKT1, MTOR, RPS6KB1, EIF4EBP1 and EIF4E genes, and a slightly decreased PTEN and TSC1 expression. In AGS, MKN28 and MKN45 cells a significant gene overexpression of PIK3CA, PIK3CB, AKT1, MTOR, RPS6KB1 and EIF4E, and a significant repression of PTEN gene expression were observed. Immunoblotting showed that PI3K-β, AKT, p-AKT, PTEN, mTOR, p-mTOR, P70S6K1, p-P70S6K1, 4E-BP1, p-4E-BP1, eIF4E and p-eIF4E proteins were present in cell lines at different levels, confirming activation of this pathway in vitro. This is the first time this extensive panel of 9 genes within PI3K/AKT/mTOR pathway has been studied in GC to clarify the biological role of this pathway in GC and develop new strategies for this malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30

    Article  PubMed  Google Scholar 

  2. Brenner H, Rothenbacher D, Arndt V (2009) Epidemiology of stomach cancer. Methods Mol Biol 472:467–477

    Article  PubMed  Google Scholar 

  3. Allum WH, Griffin SM, Watson A, Colin-Jones D (2002) Guidelines for the management of oesophageal and gastric cancer. Gut 50:v1–v23

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nakajima T (2002) Gastric cancer treatment guidelines in Japan. Gastric Cancer 5:1–5

    Article  PubMed  Google Scholar 

  5. Zhang W (2014) TCGA divides gastric cancer into four molecular subtypes: implications for individualized therapeutics. Chin J Cancer 33:469–470

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Al-Batran S-E, Ducreux M, Ohtsu A (2012) mTOR as a therapeutic target in patients with gastric cancer. Int J Cancer 130:491–496

    Article  CAS  PubMed  Google Scholar 

  7. Fan Q-W, Weiss WA (2010) Targeting the RTK-PI3K-mTOR axis in malignant glioma: overcoming resistance. Curr Top Microbiol Immunol 347:279–296

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Matsuoka T, Yashiro M (2014) The role of PI3K/Akt/mTOR signaling in gastric carcinoma. Cancers (Basel) 6:1441–1463

    Article  CAS  Google Scholar 

  9. Yang W, Raufi A, Klempner SJ (2014) Targeted therapy for gastric cancer: molecular pathways and ongoing investigations. Biochim Biophys Acta 1846:232–237

    CAS  PubMed  Google Scholar 

  10. Morgensztern D, McLeod HL (2005) PI3K/Akt/mTOR pathway as a target for cancer therapy. Anti-Cancer Drugs 16:797–803

    Article  CAS  PubMed  Google Scholar 

  11. Caron E, Ghosh S, Matsuoka Y, Ashton-Beaucage D, Therrien M, et al. (2010) A comprehensive map of the mTOR signaling network. Mol Syst Biol 6:453

    Article  PubMed  PubMed Central  Google Scholar 

  12. Polivka J, Janku F (2014) Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther 142:164–175

    Article  CAS  PubMed  Google Scholar 

  13. Tapia O, Riquelme I, Leal P, Sandoval A, Aedo S, et al. (2014) The PI3K/AKT/mTOR pathway is activated in gastric cancer with potential prognostic and predictive significance. Virchows Arch 465:25–33

    Article  CAS  PubMed  Google Scholar 

  14. Yap TA, Garrett MD, Walton MI, Raynaud F, de Bono JS, Workman P (2008) Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol 8:393–412

    Article  CAS  PubMed  Google Scholar 

  15. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  CAS  PubMed  Google Scholar 

  16. Yang Q, Guan K-L (2007) Expanding mTOR signaling. Cell Res 17:666–681

    Article  CAS  PubMed  Google Scholar 

  17. Dreesen O, Brivanlou AH (2007) Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev 3:7–17

    Article  CAS  PubMed  Google Scholar 

  18. Xiao L, Wang YC, Li WS, Du Y (2009) The role of mTOR and phospho-p70S6K in pathogenesis and progression of gastric carcinomas: an immunohistochemical study on tissue microarray. J Exp Clin Cancer Res 28:152

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen H, Guan R, Lei Y, Chen J, Ge Q, et al. (2015) Lymphangiogenesis in gastric cancer regulated through Akt/mTOR-VEGF-C/VEGF-D axis. BMC Cancer 15:103

    Article  PubMed  PubMed Central  Google Scholar 

  20. Greenfield LK, Jones NL (2013) Modulation of autophagy by helicobacter pylori and its role in gastric carcinogenesis. Trends Microbiol 21:602–612

    Article  CAS  PubMed  Google Scholar 

  21. Liu JF, Zhou XK, Chen JH, Yi G, Chen HG, et al. (2010) Up-regulation of PIK3CA promotes metastasis in gastric carcinoma. World J Gastroenterol 16:4986–4991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ye B, Jiang L-L, Xu H-T, Zhou D-W, Li Z-S Expression of PI3K/AKT pathway in gastric cancer and its blockade suppresses tumor growth and metastasis. Int J Immunopathol Pharmacol 25:627–636

  23. Cinti C, Vindigni C, Zamparelli A, La Sala D, Epistolato MC, et al. (2008) Activated Akt as an indicator of prognosis in gastric cancer. Virchows Arch 453:449–455

    Article  CAS  PubMed  Google Scholar 

  24. Murayama T, Inokuchi M, Takagi Y, Yamada H, Kojima K, et al. (2009) Relation between outcomes and localisation of p-mTOR expression in gastric cancer. Br J Cancer 100:782–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lang SA, Gaumann A, Koehl GE, Seidel U, Bataille F, et al. (2007) Mammalian target of rapamycin is activated in human gastric cancer and serves as a target for therapy in an experimental model. Int J Cancer 120:1803–1810

    Article  CAS  PubMed  Google Scholar 

  26. Sun DF, jie ZY, XQ T, YX C, JY F (2014) Inhibition of mTOR signalling potentiates the effects of trichostatin a in human gastric cancer cell lines by promoting histone acetylation. Cell Biol Int 38:50–63

    Article  CAS  PubMed  Google Scholar 

  27. Yang HY, Xue LY, Xing LX, Wang J, Wang JL, et al. (2013) Putative role of the mTOR/4E-BP1 signaling pathway in the carcinogenesis and progression of gastric cardiac adenocarcinoma. Mol Med Rep 7:537–542

    CAS  PubMed  Google Scholar 

  28. Fan S, Ramalingam SS, Kauh J, Xu Z, Khuri FR, Sun S-Y (2014) Phosphorylated eukaryotic translation initiation factor 4 (eIF4E) is elevated in human cancer tissues. Cancer Biol Ther 8:1463–1469

    Article  Google Scholar 

  29. Liang S, Guo R, Zhang Z, Liu D, Xu H, et al. (2013) Upregulation of the eIF4E signaling pathway contributes to the progression of gastric cancer, and targeting eIF4E by perifosine inhibits cell growth. Oncol Rep 29:2422–2430

    CAS  PubMed  Google Scholar 

  30. Chen C-N, Hsieh F-J, Cheng Y-M, Lee P-H, Chang K-J (2004) Expression of eukaryotic initiation factor 4E in gastric adenocarcinoma and its association with clinical outcome. J Surg Oncol 86:22–27

    Article  CAS  PubMed  Google Scholar 

  31. Wen Y-G, Wang Q, Zhou C-Z, Qiu G-Q, Peng Z-H, Tang H-M (2010) Mutation analysis of tumor suppressor gene PTEN in patients with gastric carcinomas and its impact on PI3K/AKT pathway. Oncol Rep 24:89–95

    CAS  PubMed  Google Scholar 

  32. Kang Y-H, Lee HS, Kim WH (2002) Promoter methylation and silencing of PTEN in gastric carcinoma. Lab Investig 82:285–291

    Article  CAS  PubMed  Google Scholar 

  33. Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, et al. (2011) Global quantification of mammalian gene expression control. Nature 473:337–342

    Article  PubMed  Google Scholar 

  34. The Cancer Genome Research Network (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513(7517):202–209

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank to Judy Romero-Gallo from Vanderbilt University Medical Center (Nashville, Tennessee, USA) for their invaluable help in the performance of this work. This study was supported by the Chilean National Fund for Scientific and Technological Development (FONDECYT NO. 1090171 and FONDECYT No. 1130204), the Chilean National Commission for Scientific and Technological Research (CONICYT) through the PhD scholarship and financial support for doctoral thesis NO. 24121456 and the Grant CONICYT-FONDAP No. 15130011. Ismael Riquelme also thanks to the Postdoctoral Scholarship from the Universidad de La Frontera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Roa.

Ethics declarations

Conflict of Interest and Funding Sources

Authors report no conflicts of interest.

Additional information

Ismael Riquelme & Oscar Tapia contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riquelme, I., Tapia, O., Espinoza, J.A. et al. The Gene Expression Status of the PI3K/AKT/mTOR Pathway in Gastric Cancer Tissues and Cell Lines. Pathol. Oncol. Res. 22, 797–805 (2016). https://doi.org/10.1007/s12253-016-0066-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-016-0066-5

Keywords

Navigation