Skip to main content

Advertisement

Log in

Role of long non-coding RNAs in the pathophysiology of Alzheimer’s disease and other dementias

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Dementia is the term used to describe a group of cognitive disorders characterized by a decline in memory, thinking, and reasoning abilities that interfere with daily life activities. Examples of dementia include Alzheimer’s Disease (AD), Frontotemporal dementia (FTD), Amyotrophic lateral sclerosis (ALS), Vascular dementia (VaD) and Progressive supranuclear palsy (PSP). AD is the most common form of dementia. The hallmark pathology of AD includes formation of β-amyloid (Aβ) oligomers and tau hyperphosphorylation in the brain, which induces neuroinflammation, oxidative stress, synaptic dysfunction, and neuronal apoptosis. Emerging studies have associated long non-coding RNAs (lncRNAs) with the pathogenesis and progression of the neurodegenerative diseases. LncRNAs are defined as RNAs longer than 200 nucleotides that lack the ability to encode functional proteins. LncRNAs play crucial roles in numerous biological functions for their ability to interact with different molecules, such as proteins and microRNAs, and subsequently regulate the expression of their target genes at transcriptional and post-transcriptional levels. In this narrative review, we report the function and mechanisms of action of lncRNAs found to be deregulated in different types of dementia, with the focus on AD. Finally, we discuss the emerging role of lncRNAs as biomarkers of dementias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. WHO. Dementia. [Internet] 2023 [cited 2023 June 13]; Available from: https://www.who.int/news-room/fact-sheets/detail/dementia

  2. Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y (2020) Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener 1:40. https://doi.org/10.1186/s13024-020-00391-7

    Article  Google Scholar 

  3. Dening T, Sandilyan MB (2015) Dementia: definitions and types. Nurs Stand 37:37–42. https://doi.org/10.7748/ns.29.37.37.e9405

    Article  Google Scholar 

  4. Gagliardi S, Pandini C, Garofalo M, Bordoni M, Pansarasa O, Cereda C (2018) Long non coding RNAs and ALS: still much to do. Noncoding RNA Res 4:226–231. https://doi.org/10.1016/j.ncrna.2018.11.004

    Article  CAS  Google Scholar 

  5. Yang SH (2019) Cellular and molecular mediators of neuroinflammation in Alzheimer disease. Int Neurourol J Suppl. https://doi.org/10.5213/inj.1938184.092

  6. Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ (2011) Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci U S A 14:5819–5824. https://doi.org/10.1073/pnas.1017033108

    Article  ADS  Google Scholar 

  7. Sobow T, Flirski M, Liberski PP (2004) Amyloid-beta and tau proteins as biochemical markers of Alzheimer’s disease. Acta Neurobiol Exp (Wars) 1:53–70

    Article  Google Scholar 

  8. Khan S, Barve KH, Kumar MS (2020) Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease. Curr Neuropharmacol 11:1106–1125. https://doi.org/10.2174/1570159X18666200528142429

    Article  Google Scholar 

  9. First MB (2013) Diagnostic and statistical manual of mental disorders, 5th edition, and clinical utility. J Nerv Ment Dis 9:727–729. https://doi.org/10.1097/NMD.0b013e3182a2168a

    Article  Google Scholar 

  10. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 3:263–269. https://doi.org/10.1016/j.jalz.2011.03.005

    Article  Google Scholar 

  11. Gauthreaux K, Bonnett TA, Besser LM, Brenowitz WD, Teylan M, Mock C, Chen YC, Chan KCG, Keene CD, Zhou XH, Kukull WA (2020) Concordance of clinical Alzheimer diagnosis and neuropathological features at autopsy. J Neuropathol Exp Neurol 5:465–473. https://doi.org/10.1093/jnen/nlaa014

    Article  Google Scholar 

  12. Yang S, Yang H, Luo Y, Deng X, Zhou Y, Hu B (2021) Long non-coding RNAs in neurodegenerative diseases. Neurochem Int. https://doi.org/10.1016/j.neuint.2021.105096

    Article  CAS  Google Scholar 

  13. Garcia-Fonseca A, Martin-Jimenez C, Barreto GE, Pachon AFA, Gonzalez J (2021) The emerging role of long non-coding RNAs and microRNAs in neurodegenerative diseases: a perspective of machine learning. Biomolecules. https://doi.org/10.3390/biom11081132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Riva P, Ratti A, Venturin M (2016) The long non-coding RNAs in neurodegenerative diseases: novel mechanisms of pathogenesis. Curr Alzheimer Res 11:1219–1231. https://doi.org/10.2174/1567205013666160622112234

    Article  CAS  Google Scholar 

  15. Ayers D, Scerri C (2018) Non-coding RNA influences in dementia. Noncoding RNA Res 4:188–194. https://doi.org/10.1016/j.ncrna.2018.09.002

    Article  CAS  Google Scholar 

  16. Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet R. https://doi.org/10.1093/hmg/ddl046.

    Article  CAS  Google Scholar 

  17. Mattick JS (2018) The state of long non-coding RNA biology. Noncoding RNA. https://doi.org/10.3390/ncrna4030017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, Gingeras TR, Guttman M, Hirose T, Huarte M, Johnson R, Kanduri C, Kapranov P, Lawrence JB, Lee JT, Mendell JT, Mercer TR, Moore KJ, Nakagawa S, Rinn JL, Spector DL, Ulitsky I, Wan Y, Wilusz JE, Wu M (2023) Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 6:430–447. https://doi.org/10.1038/s41580-022-00566-8

    Article  CAS  Google Scholar 

  19. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, Poliakov A, Cao X, Dhanasekaran SM, Wu YM, Robinson DR, Beer DG, Feng FY, Iyer HK, Chinnaiyan AM (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 3:199–208. https://doi.org/10.1038/ng.3192

    Article  CAS  Google Scholar 

  20. Luscher-Dias T, Conceicao IM, Schuch V, Maracaja-Coutinho V, Amaral PP, Nakaya HI (2021) Long non-coding RNAs associated with Infection and vaccine-induced immunity. Essays Biochem 4:657–669. https://doi.org/10.1042/EBC20200072

    Article  Google Scholar 

  21. Deveson IW, Brunck ME, Blackburn J, Tseng E, Hon T, Clark TA, Clark MB, Crawford J, Dinger ME, Nielsen LK, Mattick JS, Mercer TR (2018) Universal alternative splicing of noncoding exons. Cell Syst 2:245-255e5. https://doi.org/10.1016/j.cels.2017.12.005

    Article  CAS  Google Scholar 

  22. Conceicao I, Luscher-Dias T, Queiroz LR, de Melo AGB, Machado CR, Gomes KB, Souza RP, Luizon MR, Franco GR (2022) Metformin treatment modulates long non-coding RNA isoforms expression in human cells. Noncoding RNA. https://doi.org/10.3390/ncrna8050068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Engreitz JM, Haines JE, Perez EM, Munson G, Chen J, Kane M, McDonel PE, Guttman M, Lander ES (2016) Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 7629:452–455. https://doi.org/10.1038/nature20149

    Article  CAS  ADS  Google Scholar 

  24. Xing J, Liu H, Jiang W, Wang L (2020) LncRNA-encoded peptide: functions and predicting methods. Front Oncol. https://doi.org/10.3389/fonc.2020.622294

    Article  PubMed  Google Scholar 

  25. Chen Y, Long W, Yang L, Zhao Y, Wu X, Li M, Du F, Chen Y, Yang Z, Wen Q, Yi T, Xiao Z, Shen J (2021) Functional peptides encoded by long non-coding RNAs in gastrointestinal cancer. Front Oncol. https://doi.org/10.3389/fonc.2021.777374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carullo NVN, Phillips Iii RA, Simon RC, Soto SAR, Hinds JE, Salisbury AJ, Revanna JS, Bunner KD, Ianov L, Sultan FA, Savell KE, Gersbach CA, Day JJ (2020) Enhancer RNAs predict enhancer-gene regulatory links and are critical for enhancer function in neuronal systems. Nucleic Acids Res 17:9550–9570. https://doi.org/10.1093/nar/gkaa671

    Article  CAS  Google Scholar 

  27. Huang H, Li L, Wen K (2021) Interactions between long non–coding RNAs and RNA–binding proteins in cancer (review). Oncol Rep. https://doi.org/10.3892/or.2021.8207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li J, Xuan Z, Liu C (2013) Long non-coding RNAs and complex human diseases. Int J Mol Sci 9:18790–18808. https://doi.org/10.3390/ijms140918790

    Article  CAS  Google Scholar 

  29. Chen X, Ren G, Li Y, Chao W, Chen S, Li X, Xue S (2022) Level of LncRNA GAS5 and hippocampal volume are associated with the progression of Alzheimer’s disease. Clin Interv Aging. https://doi.org/10.2147/CIA.S363116

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dong LX, Zhang YY, Bao HL, Liu Y, Zhang GW, An FM (2021) LncRNA NEAT1 promotes Alzheimer’s disease by down regulating micro-27a-3p. Am J Transl Res 8:8885–8896

    Google Scholar 

  31. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). https://doi.org/10.3389/fendo.2018.00402

    Article  CAS  PubMed  Google Scholar 

  32. Lopez-Urrutia E, Bustamante Montes LP, Ladron de Guevara Cervantes D, Perez-Plasencia C, Campos-Parra AD (2019) Crosstalk between long non-coding RNAs, micro-RNAs and mRNAs: deciphering molecular mechanisms of master regulators in cancer. Front Oncol. https://doi.org/10.3389/fonc.2019.00669

    Article  PubMed  PubMed Central  Google Scholar 

  33. Paraskevopoulou MD, Hatzigeorgiou AG (2016) Analyzing MiRNA-LncRNA interactions. Methods Mol Biol. https://doi.org/10.1007/978-1-4939-3378-5_21

    Article  CAS  PubMed  Google Scholar 

  34. Tang ZB, Chen HP, Zhong D, Song JH, Cao JW, Zhao MQ, Han BC, Duan Q, Sheng XM, Yao JL, Li GZ (2022) LncRNA RMRP accelerates autophagy-mediated neurons apoptosis through miR-3142/TRIB3 signaling axis in Alzheimer’s disease. Brain Res. https://doi.org/10.1016/j.brainres.2022.147884

    Article  CAS  PubMed  Google Scholar 

  35. Pelechano V, Steinmetz LM (2013) Gene regulation by antisense transcription. Nat Rev Genet 12:880–893. https://doi.org/10.1038/nrg3594

    Article  CAS  Google Scholar 

  36. Sayad A, Najafi S, Hussen BM, Abdullah ST, Movahedpour A, Taheri M, Hajiesmaeili M (2022) The emerging roles of the beta-secretase BACE1 and the long non-coding RNA BACE1-AS in human diseases: a focus on neurodegenerative diseases and cancer. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2022.853180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, Finch CE, St Laurent G, Kenny PJ, Wahlestedt C (2008) Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 7:723–730. https://doi.org/10.1038/nm1784

    Article  CAS  Google Scholar 

  38. Li H, Zheng L, Jiang A, Mo Y, Gong Q (2018) Identification of the biological affection of long noncoding RNA BC200 in Alzheimer’s disease. NeuroReport 13:1061–1067. https://doi.org/10.1097/WNR.0000000000001057

    Article  CAS  Google Scholar 

  39. Massone S, Ciarlo E, Vella S, Nizzari M, Florio T, Russo C, Cancedda R, Pagano A (2012) NDM29, a RNA polymerase III-dependent non coding RNA, promotes amyloidogenic processing of APP and amyloid beta secretion. Biochim Biophys Acta 7:1170–1177. https://doi.org/10.1016/j.bbamcr.2012.05.001

    Article  CAS  Google Scholar 

  40. Zlokovic BV, Deane R, Sagare AP, Bell RD, Winkler EA (2010) Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer’s amyloid beta-peptide elimination from the brain. J Neurochem 5:1077–1089. https://doi.org/10.1111/j.1471-4159.2010.07002.x

    Article  CAS  Google Scholar 

  41. Wegmann S, Biernat J, Mandelkow E (2021) A current view on tau protein phosphorylation in Alzheimer’s disease. Curr Opin Neurobiol. https://doi.org/10.1016/j.conb.2021.03.003

    Article  CAS  PubMed  Google Scholar 

  42. Lan Z, Chen Y, Jin J, Xu Y, Zhu X (2021) Long non-coding RNA: insight into mechanisms of Alzheimer’s disease. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2021.821002

    Article  CAS  PubMed  Google Scholar 

  43. Yan Y, Yan H, Teng Y, Wang Q, Yang P, Zhang L, Cheng H, Fu S (2020) Long non-coding RNA 00507/miRNA-181c-5p/TTBK1/MAPT axis regulates tau hyperphosphorylation in Alzheimer’s disease. J Gene Med 12:e3268. https://doi.org/10.1002/jgm.3268

    Article  CAS  Google Scholar 

  44. Xu W, Li K, Fan Q, Zong B, Han L (2020) Knockdown of long non-coding RNA SOX21-AS1 attenuates amyloid-beta-induced neuronal damage by sponging miR-107. Biosci Rep. https://doi.org/10.1042/BSR20194295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Spreafico M, Grillo B, Rusconi F, Battaglioli E, Venturin M (2018) Multiple layers of CDK5R1 regulation in Alzheimer’s disease implicate long non-coding RNAs. Int J Mol Sci. https://doi.org/10.3390/ijms19072022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li K, Wang Z (2023) lncRNA NEAT1: Key player in neurodegenerative diseases. Ageing Res Rev. https://doi.org/10.1016/j.arr.2023.101878

    Article  CAS  PubMed  Google Scholar 

  47. Canseco-Rodriguez A, Masola V, Aliperti V, Meseguer-Beltran M, Donizetti A, Sanchez-Perez AM (2022) Long non-coding RNAs, extracellular vesicles and inflammation in Alzheimer’s disease. Int J Mol Sci. https://doi.org/10.3390/ijms232113171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maccioni RB, Navarrete LP, Gonzalez A, Gonzalez-Canacer A, Guzman-Martinez L, Cortes N (2020) Inflammation: a major target for compounds to control Alzheimer’s disease. J Alzheimers Dis 4:1199–1213. https://doi.org/10.3233/JAD-191014

    Article  CAS  Google Scholar 

  49. Yi J, Chen B, Yao X, Lei Y, Ou F, Huang F (2019) Upregulation of the lncRNA MEG3 improves cognitive impairment, alleviates neuronal damage, and inhibits activation of astrocytes in hippocampus tissues in Alzheimer’s Disease through inactivating the PI3K/Akt signaling pathway. J Cell Biochem 10:18053–18065. https://doi.org/10.1002/jcb.29108

    Article  CAS  Google Scholar 

  50. Zhuang J, Cai P, Chen Z, Yang Q, Chen X, Wang X, Zhuang X (2020) Long noncoding RNA MALAT1 and its target microRNA-125b are potential biomarkers for Alzheimer’s disease management via interactions with FOXQ1, PTGS2 and CDK5. Am J Transl Res 9:5940–5954

    Google Scholar 

  51. Ma P, Li Y, Zhang W, Fang F, Sun J, Liu M, Li K, Dong L (2019) Long non-coding RNA MALAT1 inhibits neuron apoptosis and neuroinflammation while stimulates neurite outgrowth and its correlation with MiR-125b mediates PTGS2, CDK5 and FOXQ1 in Alzheimer’s disease. Curr Alzheimer Res 7:596–612. https://doi.org/10.2174/1567205016666190725130134

    Article  CAS  Google Scholar 

  52. Pan Y, Wang T, Zhao Z, Wei W, Yang X, Wang X, Xin W (2022) Novel insights into the emerging role of neat1 and Its effects downstream in the regulation of inflammation. J Inflamm Res. https://doi.org/10.2147/JIR.S338162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. He L, Chen Z, Wang J, Feng H (2022) Expression relationship and significance of NEAT1 and miR-27a-3p in serum and cerebrospinal fluid of patients with Alzheimer’s disease. BMC Neurol 1:203. https://doi.org/10.1186/s12883-022-02728-9

    Article  CAS  Google Scholar 

  54. Liu Y, Cheng X, Li H, Hui S, Zhang Z, Xiao Y, Peng W (2022) Non-coding RNAs as novel regulators of neuroinflammation in Alzheimer’s disease. Front Immunol. https://doi.org/10.3389/fimmu.2022.908076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou B, Li L, Qiu X, Wu J, Xu L, Shao W (2020) Long non-coding RNA ANRIL knockdown suppresses apoptosis and pro-inflammatory cytokines while enhancing neurite outgrowth via binding microRNA-125a in a cellular model of Alzheimer’s disease. Mol Med Rep 2:1489–1497. https://doi.org/10.3892/mmr.2020.11203

    Article  CAS  Google Scholar 

  56. Zhang J, Wang R (2021) Deregulated lncRNA MAGI2-AS3 in Alzheimer’s disease attenuates amyloid-beta induced neurotoxicity and neuroinflammation by sponging miR-374b-5p. Exp Gerontol. https://doi.org/10.1016/j.exger.2020.111180

    Article  CAS  PubMed  Google Scholar 

  57. Ionescu-Tucker A, Cotman CW (2021) Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol Aging. https://doi.org/10.1016/j.neurobiolaging.2021.07.014

    Article  CAS  PubMed  Google Scholar 

  58. Guo CC, Jiao CH, Gao ZM (2018) Silencing of LncRNA BDNF-AS attenuates Abeta(25–35)-induced neurotoxicity in PC12 cells by suppressing cell apoptosis and oxidative stress. Neurol Res 9:795–804. https://doi.org/10.1080/01616412.2018.1480921

    Article  CAS  Google Scholar 

  59. Wang X, Shen C, Zhu J, Shen G, Li Z, Dong J (2019) Long noncoding RNAs in the regulation of oxidative stress. Oxid Med Cell Longev. https://doi.org/10.1155/2019/1318795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang X, Wang C, Geng C, Zhao K (2018) LncRNA XIST knockdown attenuates Abeta(25–35)-induced toxicity, oxidative stress, and apoptosis in primary cultured rat hippocampal neurons by targeting miR-132. Int J Clin Exp Pathol 8:3915–3924

    Google Scholar 

  61. Zhang YY, Bao HL, Dong LX, Liu Y, Zhang GW, An FM (2021) Silenced lncRNA H19 and up-regulated microRNA-129 accelerates viability and restrains apoptosis of PC12 cells induced by Abeta(25–35) in a cellular model of Alzheimer’s disease. Cell Cycle 1:112–125. https://doi.org/10.1080/15384101.2020.1863681

    Article  CAS  Google Scholar 

  62. Nistico R, Pignatelli M, Piccinin S, Mercuri NB, Collingridge G (2012) Targeting synaptic dysfunction in Alzheimer’s disease therapy. Mol Neurobiol 3:572–587. https://doi.org/10.1007/s12035-012-8324-3

    Article  CAS  Google Scholar 

  63. Jackson J, Jambrina E, Li J, Marston H, Menzies F, Phillips K, Gilmour G (2019) Targeting the synapse in Alzheimer’s disease. Front Neurosci. https://doi.org/10.3389/fnins.2019.00735

    Article  PubMed  PubMed Central  Google Scholar 

  64. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 5594:789–791. https://doi.org/10.1126/science.1074069

    Article  CAS  ADS  Google Scholar 

  65. Lu B, Nagappan G, Lu Y (2014) BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol. https://doi.org/10.1007/978-3-642-45106-5_9

    Article  CAS  PubMed  Google Scholar 

  66. Ding Y, Luan W, Shen X, Wang Z, Cao Y (2022) LncRNA BDNF-AS as ceRNA regulates the miR-9-5p/BACE1 pathway affecting neurotoxicity in Alzheimer’s disease. Arch Gerontol Geriatr. https://doi.org/10.1016/j.archger.2021.104614

    Article  CAS  PubMed  Google Scholar 

  67. Gu C, Chen C, Wu R, Dong T, Hu X, Yao Y, Zhang Y (2018) Long noncoding RNA EBF3-AS promotes neuron apoptosis in Alzheimer’s disease. DNA Cell Biol 3:220–226. https://doi.org/10.1089/dna.2017.4012

    Article  CAS  Google Scholar 

  68. Lassmann H, Bancher C, Breitschopf H, Wegiel J, Bobinski M, Jellinger K, Wisniewski HM (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol 1:35–41. https://doi.org/10.1007/BF00294257

    Article  Google Scholar 

  69. Rossi MN, Antonangeli F (2014) LncRNAs: new players in apoptosis control. Int J Cell Biol. https://doi.org/10.1155/2014/473857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cai M, Wang YW, Xu SH, Qiao S, Shu QF, Du JZ, Li YG, Liu XL (2018) Regulatory effects of the long non–coding RNA RP11–543N12.1 and microRNA–324–3p axis on the neuronal apoptosis induced by the inflammatory reactions of microglia. Int J Mol Med 3:1741–1755. https://doi.org/10.3892/ijmm.2018.3736

    Article  CAS  Google Scholar 

  71. Wang Q, Ge X, Zhang J, Chen L (2020) Effect of lncRNA WT1-AS regulating WT1 on oxidative stress injury and apoptosis of neurons in Alzheimer’s disease via inhibition of the miR-375/SIX4 axis. Aging 23:23974–23995. https://doi.org/10.18632/aging.104079

    Article  Google Scholar 

  72. Wang X, Zhang M, Liu H (2019) LncRNA17A regulates autophagy and apoptosis of SH-SY5Y cell line as an in vitro model for Alzheimer’s disease. Biosci Biotechnol Biochem 4:609–621. https://doi.org/10.1080/09168451.2018.1562874

    Article  CAS  Google Scholar 

  73. Ghasemi A, Qaffaripour Z, Tourani M, Saleki K, Rahmani-Kukia N, Khatami SH, Taheri-Anganeh M (2023) The relationship between long non-coding RNAs and Wnt/beta-catenin signaling pathway in the pathogenesis of Alzheimer’s disease. Exp Neurol. https://doi.org/10.1016/j.expneurol.2023.114434

    Article  CAS  PubMed  Google Scholar 

  74. Cortini F, Roma F, Villa C (2019) Emerging roles of long non-coding RNAs in the pathogenesis of Alzheimer’s disease. Ageing Res Rev. https://doi.org/10.1016/j.arr.2019.01.001

    Article  CAS  PubMed  Google Scholar 

  75. Andrade-Guerrero J, Santiago-Balmaseda A, Jeronimo-Aguilar P, Vargas-Rodriguez I, Cadena-Suarez AR, Sanchez-Garibay C, Pozo-Molina G, Mendez-Catala CF, Cardenas-Aguayo MD, Diaz-Cintra S, Pacheco-Herrero M, Luna-Munoz J, Soto-Rojas LO (2023) Alzheimer’s disease: an updated overview of its genetics. Int J Mol Sci. https://doi.org/10.3390/ijms24043754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nikolac Perkovic M, Videtic Paska A, Konjevod M, Kouter K, Svob Strac D, Nedic Erjavec G, Pivac N (2021) Epigenetics of Alzheimer’s disease. Biomolecules. https://doi.org/10.3390/biom11020195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 1:59–70. https://doi.org/10.1111/ene.13439

    Article  Google Scholar 

  78. Raulin AC, Doss SV, Trottier ZA, Ikezu TC, Bu G, Liu CC (2022) ApoE in Alzheimer’s disease: pathophysiology and therapeutic strategies. Mol Neurodegener 1:72. https://doi.org/10.1186/s13024-022-00574-4

    Article  CAS  Google Scholar 

  79. Corsi GI, Gadekar VP, Haukedal H, Doncheva NT, Anthon C, Ambardar S, Palakodeti D, Hyttel P, Freude K, Seemann SE, Gorodkin J (2023) The transcriptomic landscape of neurons carrying PSEN1 mutations reveals changes in extracellular matrix components and non-coding gene expression. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2022.105980

    Article  CAS  PubMed  Google Scholar 

  80. Barsottini OG, Felicio AC, Aquino CC, Pedroso JL (2010) Progressive supranuclear palsy: new concepts. Arq Neuropsiquiatr 6:938–946. https://doi.org/10.1590/s0004-282x2010000600020

    Article  Google Scholar 

  81. Jabbari E, Koga S, Valentino RR, Reynolds RH, Ferrari R, Tan MMX, Rowe JB, Dalgard CL, Scholz SW, Dickson DW, Warner TT, Revesz T, Hoglinger GU, Ross OA, Ryten M, Hardy J, Shoai M, Morris HR, Group PSPG (2021) Genetic determinants of survival in progressive supranuclear palsy: a genome-wide association study. Lancet Neurol 2:107–116. https://doi.org/10.1016/S1474-4422(20)30394-X

    Article  Google Scholar 

  82. Yu Y, Pang D, Li C, Gu X, Chen Y, Ou R, Wei Q, Shang H (2022) The expression discrepancy and characteristics of long non-coding RNAs in peripheral blood leukocytes from amyotrophic lateral sclerosis patients. Mol Neurobiol 6:3678–3689. https://doi.org/10.1007/s12035-022-02789-4

    Article  CAS  Google Scholar 

  83. Outeiro TF, Koss DJ, Erskine D, Walker L, Kurzawa-Akanbi M, Burn D, Donaghy P, Morris C, Taylor JP, Thomas A, Attems J, McKeith I (2019) Dementia with lewy bodies: an update and outlook. Mol Neurodegener 1:5. https://doi.org/10.1186/s13024-019-0306-8

    Article  Google Scholar 

  84. Wang P, Mao S, Yi T, Wang L (2023) LncRNA MALAT1 targets mir-9-3p to upregulate SAP97 in the hippocampus of mice with vascular dementia. Biochem Genet 3:916–930. https://doi.org/10.1007/s10528-022-10289-2

    Article  CAS  Google Scholar 

  85. Li W, Wei D, Liang J, Xie X, Song K, Huang L (2019) Comprehensive evaluation of white matter damage and neuron death and whole-transcriptome analysis of rats with chronic cerebral hypoperfusion. Front Cell Neurosci. https://doi.org/10.3389/fncel.2019.00310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gomez-Rio M, Caballero MM, Gorriz Saez JM, Minguez-Castellanos A (2016) Diagnosis of neurodegenerative diseases: the clinical approach. Curr Alzheimer Res 5:469–474. https://doi.org/10.2174/1567205013666151116141603

    Article  CAS  Google Scholar 

  87. Dokholyan NV, Mohs RC, Bateman RJ (2022) Challenges and progress in research, diagnostics, and therapeutics in Alzheimer’s disease and related dementias. Alzheimers Dement (NY) 1:e12330. https://doi.org/10.1002/trc2.12330

    Article  Google Scholar 

  88. Luebke M, Parulekar M, Thomas FP (2023) Fluid biomarkers for the diagnosis of neurodegenerative diseases. Biomark Neuropsychiatr. https://doi.org/10.1016/j.bionps.2023.100062

    Article  Google Scholar 

  89. Garofalo M, Pandini C, Sproviero D, Pansarasa O, Cereda C, Gagliardi S (2021) Advances with long non-coding RNAs in Alzheimer’s disease as peripheral biomarker. Genes (Basel). https://doi.org/10.3390/genes12081124

    Article  CAS  PubMed  Google Scholar 

  90. Freedman JE, Miano JM, National Heart L, Blood Institute Workshop P (2017) Challenges and opportunities in linking long noncoding RNAs to cardiovascular, lung, and blood diseases. Arterioscler Thromb Vasc Biol 1:21–25. https://doi.org/10.1161/ATVBAHA.116.308513

    Article  CAS  Google Scholar 

  91. Zhang M, He P, Bian Z (2021) Long noncoding RNAs in neurodegenerative diseases: pathogenesis and potential implications as clinical biomarkers. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2021.685143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shobeiri P, Alilou S, Jaberinezhad M, Zare F, Karimi N, Maleki S, Teixeira AL, Perry G, Rezaei N (2023) Circulating long non-coding RNAs as novel diagnostic biomarkers for Alzheimer’s disease (AD): a systematic review and meta-analysis. PLoS ONE 3:e0281784. https://doi.org/10.1371/journal.pone.0281784

    Article  CAS  Google Scholar 

  93. Ren Z, Chu C, Pang Y, Cai H, Jia L (2023) A group of long non-coding RNAs in blood acts as a specific biomarker of Alzheimer’s disease. Mol Neurobiol 2:566–575. https://doi.org/10.1007/s12035-022-03105-w

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MRL and KBG thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Brazil for the research grant.

Funding

MRL and KBG are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq for the research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LCRT, IM, MRL, KBG. Methodology: LCRT, IM. Writing original draft: LCRT, IM. Writing review and editing: LCRT, IM, MRL, KBG.

Corresponding author

Correspondence to Karina Braga Gomes.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This is an observational study. The COEP-UFMG Ethics Committee has confirmed that no ethical approval is required.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, L.C.R., Mamede, I., Luizon, M.R. et al. Role of long non-coding RNAs in the pathophysiology of Alzheimer’s disease and other dementias. Mol Biol Rep 51, 270 (2024). https://doi.org/10.1007/s11033-023-09178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09178-7

Keywords

Navigation