Skip to main content

Advertisement

Log in

Diagnostic and therapeutic value of EVs in lungs diseases and inflammation

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) are membrane-derived messengers which have been playing an important role in the inflammation and pathogenesis of lung diseases. EVs contain varieties of DNA, RNA, and membrane receptors through which they work as a delivery system for bioactive molecules as well as intracellular communicators. EV signaling mediates tumor progression and metastasis. EVs are linked with many diseases and perform a diagnostic role in lung injury and inflammation so are used to diagnose the severity of diseases. EVs containing a variety of biomolecules communicate with the recipient cells during pathophysiological mechanisms thereby acquiring the attention of clinicians toward the diagnostic and therapeutic potential of EVs in different lung diseases. In this review, we summarize the role of EVs in inflammation with an emphasis on their potential as a novel candidate in the diagnostics and therapeutics of chronic obstructive pulmonary disease, asthma, and sarcoidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Möller A, Lobb RJ (2020) The evolving translational potential of small extracellular vesicles in cancer. Nat Rev Cancer 20(12):697–709

    Article  PubMed  Google Scholar 

  2. Doyle LM, Wang MZ (2019) Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8(7):727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Andaloussi SE et al (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12(5):347–357

    Article  PubMed  Google Scholar 

  4. Lee Y, El Andaloussi S, Wood MJ (2012) Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 21(R1):R125–R134

    Article  CAS  PubMed  Google Scholar 

  5. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pan B-T, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33(3):967–978

    Article  CAS  PubMed  Google Scholar 

  7. Yáñez-Mó M et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4(1):27066

    Article  PubMed  Google Scholar 

  8. Van Niel G, d’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19(4):213

    Article  PubMed  Google Scholar 

  9. Valter M et al (2020) Extracellular vesicles in inflammatory bowel disease: small particles, big players. J Crohn’s Colitis 15:499

    Article  Google Scholar 

  10. Bose S et al (2020) Extracellular vesicles: an emerging platform in gram-positive bacteria. Microbial Cell (Graz, Austria) 7(12):312–322

    Article  CAS  PubMed  Google Scholar 

  11. Beveridge TJ (1999) Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181(16):4725–4733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ellis TN, Kuehn MJ (2010) Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 74(1):81–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tominaga N, Yoshioka Y, Ochiya T (2015) A novel platform for cancer therapy using extracellular vesicles. Adv Drug Deliv Rev 95:50–55

    Article  CAS  PubMed  Google Scholar 

  14. Zhuang X et al (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19(10):1769–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dagnelie MA et al (2020) Bacterial extracellular vesicles: a new way to decipher host-microbiota communications in inflammatory dermatoses. Exp Dermatol 29(1):22–28

    Article  PubMed  Google Scholar 

  16. Lee EY et al (2009) Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 9(24):5425–5436

    Article  CAS  PubMed  Google Scholar 

  17. Rajabi H et al (2022) Emerging role of exosomes in the pathology of chronic obstructive pulmonary diseases; destructive and therapeutic properties. Stem Cell Res Ther. https://doi.org/10.1186/s13287-022-02820-4

    Article  PubMed  PubMed Central  Google Scholar 

  18. Teng F, Fussenegger M (2021) Shedding light on extracellular vesicle biogenesis and bioengineering. Adv Sci 8:2003505

    Article  CAS  Google Scholar 

  19. Kalluri R, Lebleu V (2020) The biology, function, and biomedical applications of exosomes. Science 367:eaau6977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Srinivas AN et al (2021) Extracellular vesicles as inflammatory drivers in NAFLD. Front Immunol. https://doi.org/10.3389/fimmu.2020.627424

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mo Z et al (2020) Extracellular vesicle-associated organotropic metastasis. Cell Prolif 54:e12948

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vallhov H et al (2015) Dendritic cell-derived exosomes carry the major cat allergen F el d 1 and induce an allergic immune response. Allergy 70(12):1651–1655

    Article  CAS  PubMed  Google Scholar 

  23. Admyre C et al (2007) B cell–derived exosomes can present allergen peptides and activate allergen-specific T cells to proliferate and produce TH2-like cytokines. J Allergy Clin Immunol 120(6):1418–1424

    Article  CAS  PubMed  Google Scholar 

  24. Raposo G et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3):1161–1172

    Article  CAS  PubMed  Google Scholar 

  25. Barnes PJ (2016) Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 138(1):16–27

    Article  CAS  PubMed  Google Scholar 

  26. Pelgrim CE et al (2019) Psychological co-morbidities in COPD: targeting systemic inflammation, a benefit for both? Eur J Pharmacol 842:99–110

    Article  CAS  PubMed  Google Scholar 

  27. Hikichi M et al (2019) Pathogenesis of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke. J Thorac Dis 11(Suppl 17):S2129-s2140

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang L et al (2021) Cigarette smoke extract-treated airway epithelial cells-derived exosomes promote M1 macrophage polarization in chronic obstructive pulmonary disease. Int Immunopharmacol 96:107700

    Article  CAS  PubMed  Google Scholar 

  29. Martin PJ et al (2019) Cellular response and extracellular vesicles characterization of human macrophages exposed to fine atmospheric particulate matter. Environ Pollut 254:112933

    Article  CAS  PubMed  Google Scholar 

  30. Moon H-G et al (2014) CCN1 secretion and cleavage regulate the lung epithelial cell functions after cigarette smoke. Am J Physiol 307(4):L326–L337

    CAS  Google Scholar 

  31. Fujita Y et al (2015) Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis. J Extracell Vesicles 4(1):28388

    Article  PubMed  Google Scholar 

  32. Stockley RA, Turner AM (2014) α-1-Antitrypsin deficiency: clinical variability, assessment, and treatment. Trends Mol Med 20(2):105–115

    Article  CAS  PubMed  Google Scholar 

  33. Lockett AD et al (2014) Active trafficking of alpha 1 antitrypsin across the lung endothelium. PLoS ONE 9(4):e93979

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li C-X et al (2016) Prediction of COPD-and smoking status by network-based multi-‘omics data fusion analysis. Eur Respir J 48:130

    Google Scholar 

  35. Lambrecht BN, Hammad H (2015) The immunology of asthma. Nat Immunol 16(1):45

    Article  CAS  PubMed  Google Scholar 

  36. Locksley RM (2010) Asthma and allergic inflammation. Cell 140(6):777–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sandford AJ et al (2000) Polymorphisms in the IL4, IL4RA, and FCERIB genes and asthma severity. J Allergy Clin Immunol 106(1):135–140

    Article  CAS  PubMed  Google Scholar 

  38. Howard TD et al (2002) Gene-gene interaction in asthma: IL4RA and IL13 in a Dutch population with asthma. Am J Hum Genet 70(1):230–236

    Article  CAS  PubMed  Google Scholar 

  39. Levänen B et al (2013) Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J Allergy Clin Immunol 131(3):894-903.e8

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schauberger E et al (2016) Lipid mediators of allergic disease: pathways, treatments, and emerging therapeutic targets. Curr Allergy Asthma Rep 16(7):48

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gabrielsson S et al (2017) Pulmonary extracellular vesicles as mediators of local and systemic inflammation. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2017.00039

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gaddam M et al (2021) Sarcoidosis—various presentations, coexisting diseases and malignancies. Cureus 13:e16967

    PubMed  PubMed Central  Google Scholar 

  43. Chen E, Moller D (2015) Etiologies of Sarcoidosis. Clin Rev Allergy Immunol 49:6

    Article  CAS  PubMed  Google Scholar 

  44. Qazi KR et al (2010) Proinflammatory exosomes in bronchoalveolar lavage fluid of patients with sarcoidosis. Thorax 65(11):1016–1024

    Article  PubMed  Google Scholar 

  45. Martinez-Bravo M-J et al (2017) Pulmonary sarcoidosis is associated with exosomal vitamin D–binding protein and inflammatory molecules. J Allergy Clin Immunol 139(4):1186–1194

    Article  CAS  PubMed  Google Scholar 

  46. Kaur G et al (2020) Differential plasma exosomal long non-coding RNAs expression profiles and their emerging role in E-cigarette users, cigarette, waterpipe, and dual smokers. PLoS ONE 15(12):e0243065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Makiguchi T et al (2016) Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respir Res 17:1–15

    Article  Google Scholar 

  48. Hough K, Deshane J (2019) Exosomes in allergic airway diseases. Curr Allergy Asthma Rep. https://doi.org/10.1007/s11882-019-0857-3

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fu C et al (2020) Plasmacytoid dendritic cells cross-prime naive CD8 T cells by transferring antigen to conventional dendritic cells through exosomes. Proc Natl Acad Sci 117(38):23730–23741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hough K, Deshane J (2019) Exosomes in allergic airway diseases. Curr Allergy Asthma Rep 19(5):1–8

    Article  Google Scholar 

  51. McKelvey KJ et al (2015) Exosomes: mechanisms of uptake. J Circ Biomark 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hough K et al (2018) Unique lipid signatures of extracellular vesicles from the airways of asthmatics. Sci Rep 8:10340

    Article  PubMed  PubMed Central  Google Scholar 

  53. Segura E et al (2007) CD8+ dendritic cells use LFA-1 to capture MHC-peptide complexes from exosomes in vivo. J Immunol 179(3):1489–1496

    Article  CAS  PubMed  Google Scholar 

  54. Nolte-‘t Hoen EN, Buschow SI, Anderton SM, Stoorvogel W, Wauben MHM (2009) Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood 113(9):1977–1981

    Article  PubMed  Google Scholar 

  55. Loving CL, Brockmeier SL, Sacco RE (2007) Differential type I interferon activation and susceptibility of dendritic cell populations to porcine arterivirus. Immunology 120(2):217–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hanisch F-G et al (2014) Human trefoil factor 2 is a lectin that binds α-GlcNAc-capped mucin glycans with antibiotic activity against Helicobacter pylori. J Biol Chem 289(40):27363–27375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chiba M et al (2018) Exosomes released from pancreatic cancer cells enhance angiogenic activities via dynamin-dependent endocytosis in endothelial cells in vitro. Sci Rep 8(1):1–9

    Article  Google Scholar 

  58. Wang J et al (2017) Exosomes: a novel strategy for treatment and prevention of diseases. Front Pharmacol. https://doi.org/10.3389/fphar.2017.00300

    Article  PubMed  PubMed Central  Google Scholar 

  59. Esser J et al (2010) Exosomes from human macrophages and dendritic cells contain enzymes for leukotriene biosynthesis and promote granulocyte migration. J Allergy Clin Immunol 126(5):1032–104.e4

    Article  CAS  PubMed  Google Scholar 

  60. Skotland T, Sandvig K, Llorente A (2017) Lipids in exosomes: current knowledge and the way forward. Prog Lipid Res 66:30–41

    Article  CAS  PubMed  Google Scholar 

  61. Podbielska M et al (2016) Cytokine-induced release of ceramide-enriched exosomes as a mediator of cell death signaling in an oligodendroglioma cell line. J Lipid Res 57(11):2028–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kakazu E et al (2016) Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1α-dependent manner. J Lipid Res 57(2):233–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Qiao Y et al (2018) Identification of exosomal miRNAs in rats with pulmonary neutrophilic inflammation induced by zinc oxide nanoparticles. Front Physiol 9:217

    Article  PubMed  PubMed Central  Google Scholar 

  64. Alexander M et al (2015) Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun 6:7321–7321

    Article  CAS  PubMed  Google Scholar 

  65. Real JM et al (2018) Exosomes from patients with septic shock convey miRNAs related to inflammation and cell cycle regulation: new signaling pathways in sepsis? Crit Care 22(1):1–11

    Article  Google Scholar 

  66. Kishore A et al (2018) Expression analysis of extracellular microRNA in bronchoalveolar lavage fluid from patients with pulmonary sarcoidosis. Respirology 23:1166

    Article  PubMed  Google Scholar 

  67. Murugaiyan G et al (2015) MicroRNA-21 promotes Th17 differentiation and mediates experimental autoimmune encephalomyelitis. J Clin Investig 125(3):1069–1080

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pua HH et al (2016) MicroRNAs 24 and 27 suppress allergic inflammation and target a network of regulators of T helper 2 cell-associated cytokine production. Immunity 44(4):821–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Essandoh K et al (2016) MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response. Shock (Augusta, Ga.) 46(2):122

    Article  CAS  PubMed  Google Scholar 

  70. Sangaphunchai P, Todd I, Fairclough LC (2020) Extracellular vesicles and asthma: a review of the literature. Clin Exp Allergy 50(3):291–307

    Article  PubMed  Google Scholar 

  71. Prado N et al (2008) Exosomes from bronchoalveolar fluid of tolerized mice prevent allergic reaction. J Immunol (Baltimore, Md. : 1950) 181:1519–1525

    Article  CAS  Google Scholar 

  72. Prado N et al (2010) Bystander suppression to unrelated allergen sensitization through intranasal administration of tolerogenic exosomes in mouse. Mol Immunol 47:2148–2151

    Article  CAS  PubMed  Google Scholar 

  73. Almqvist N et al (2008) Serum-derived exosomes from antigen-fed mice prevent allergic sensitization in a model of allergic asthma. Immunology 125:21–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lässer C et al (2016) Exosomes in the nose induce immune cell trafficking and harbour an altered protein cargo in chronic airway inflammation. J Transl Med. https://doi.org/10.1186/s12967-016-0927-4

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sangaphunchai P, Todd I, Fairclough L (2020) Extracellular Vesicles and Asthma: a review of the literature. Clin Exp Allergy 50:291

    Article  PubMed  Google Scholar 

  76. Kadota T et al (2016) Extracellular vesicles in chronic obstructive pulmonary disease. Int J Mol Sci 17(11):1801

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kosaka N et al (2016) Versatile roles of extracellular vesicles in cancer. J Clin Investig 126:1163

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lener T et al (2015) Applying extracellular vesicles based therapeutics in clinical trials—an ISEV position paper. J Extracell Vesicles 4:30087

    Article  PubMed  Google Scholar 

  79. Escudier B et al (2005) Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med 3:10

    Article  PubMed  PubMed Central  Google Scholar 

  80. Morse M et al (2005) A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 3:9

    Article  PubMed  PubMed Central  Google Scholar 

  81. Besse B et al (2015) Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. OncoImmunology 5:00–00

    Google Scholar 

  82. Dal Collo G et al (2020) Functional dosing of mesenchymal stromal cell-derived extracellular vesicles for the prevention of acute graft-versus-host-disease. Stem Cells (Dayton, Ohio) 38:698

    Article  Google Scholar 

  83. Nagano T et al (2019) Crucial role of extracellular vesicles in bronchial asthma. Int J Mol Sci 20:2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Holgate S (2000) Genetic and environmental interaction in allergy and asthma. J Allergy Clin Immunol 104:1139–1146

    Article  Google Scholar 

  85. Levänen B et al (2013) Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J Allergy Clin Immunol 131:894

    Article  PubMed  PubMed Central  Google Scholar 

  86. Holtzman J, Lee H (2020) Emerging role of extracellular vesicles in the respiratory system. Exp Mol Med 52:887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xie H, He S-H (2005) Roles of histamine and its receptors in allergic and inflammatory bowel diseases. World J Gastroenterol 11:2851–2857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Srinivasan A et al (2021) Recent updates on the role of extracellular vesicles in the pathogenesis of allergic asthma. Extracell Vesicles Circ Nucl Acids 2:127–174

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Fazel S et al (1992) B lymphocyte accumulations in human pulmonary sarcoidosis. Thorax 47:964–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Qazi K et al (2010) Proinflammatory exosomes in bronchoalveolar lavage fluid of patients with sarcoidosis. Thorax 65:1016–1024

    Article  PubMed  Google Scholar 

  91. Ullsten-Wahlund C (2018) Extracellular vesicles: mediators of immune modulation in the lung and as therapeutic vehicles

  92. Martinez-Bravo M-J et al (2016) Pulmonary sarcoidosis is associated with exosomal vitamin d-binding protein and inflammatory molecules. J Allergy Clin Immunol 139:1186

    Article  PubMed  Google Scholar 

  93. Prame Kumar K, Nicholls A, Wong C (2018) Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease. Cell Tissue Res 371:551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Eken C et al (2010) Ectosomes released by polymorphonuclear neutrophils induce a MerTK-dependent anti-inflammatory pathway in macrophages. J Biol Chem 285(51):39914–39921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Van Hezel ME et al (2017) The ability of extracellular vesicles to induce a pro-inflammatory host response. Int J Mol Sci 18(6):1285

    Article  PubMed  PubMed Central  Google Scholar 

  96. Halim ATA, Ariffin NAFM, Azlan M (2016) The multiple roles of monocytic microparticles. Inflammation 39(4):1277–1284

    Article  PubMed  Google Scholar 

  97. Prakash PS et al (2012) Human microparticles generated during sepsis in patients with critical illness are neutrophil-derived and modulate the immune response. J Trauma Acute Care Surg 73(2):401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Johnson BL III et al (2017) Neutrophil derived microparticles increase mortality and the counter-inflammatory response in a murine model of sepsis. Biochim Biophys Acta 1863(10):2554–2563

    Article  CAS  PubMed Central  Google Scholar 

  99. Sadallah S et al (2014) Ectosomes released by platelets induce differentiation of CD4+ T cells into T regulatory cells. Thromb Haemost 112(12):1219–1229

    Article  CAS  PubMed  Google Scholar 

  100. Edelstein LC (2017) The role of platelet microvesicles in intercellular communication. Platelets 28(3):222–227

    Article  CAS  PubMed  Google Scholar 

  101. Sercombe L et al (2015) Advances and challenges of liposome assisted drug delivery. Front Pharmacol. https://doi.org/10.3389/fphar.2015.00286

    Article  PubMed  PubMed Central  Google Scholar 

  102. Agrawal U et al (2014) Is nanotechnology a boon for oral drug delivery? Drug Discov Today 19:1530

    Article  CAS  PubMed  Google Scholar 

  103. Raemdonck K et al (2013) ChemInform abstract: merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery. Chem Soc Rev 43:444

    Article  PubMed  Google Scholar 

  104. Ha D, Yang N, Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6:287

    Article  PubMed  PubMed Central  Google Scholar 

  105. Vashisht M et al (2017) Curcumin encapsulated in milk exosomes resists human digestion and possesses enhanced intestinal permeability in vitro. Appl Biochem Biotechnol 183:993

    Article  CAS  PubMed  Google Scholar 

  106. Aqil F et al (2017) Exosomes for the enhanced tissue bioavailability and efficacy of curcumin. AAPS J 19:1691

    Article  CAS  PubMed  Google Scholar 

  107. Aqil F et al (2016) Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp Mol Pathol 101:12

    Article  CAS  PubMed  Google Scholar 

  108. Melo S et al (2014) Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26:707–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhou W et al (2014) Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25:501–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Aga M et al (2014) Exosomal HIF1 supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene 33:4613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ohno S-I et al (2012) Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 21:185

    Article  PubMed  PubMed Central  Google Scholar 

  112. Mortaz E et al (2013) Probiotics in the management of lung diseases. Mediators Inflamm 2013:751068

    Article  PubMed  PubMed Central  Google Scholar 

  113. Medellin-Peña M, Griffiths M, Medellin-Pena MJ, Griffiths MW (2009) Effect of molecules secreted by Lactobacillus acidophilus strain La-5 on Escherichia coli O157:H7 colonization. Appl Environ Microbiol 75:1165–1172

    Article  PubMed  Google Scholar 

  114. Stiles M, Holzapfel W (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36:1–29

    Article  CAS  PubMed  Google Scholar 

  115. Techtmann S, Robb F (2010) Archaeal-like chaperonins in bacteria. Proc Natl Acad Sci USA 107:20269–20274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yáñez-Mó M et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066

    Article  PubMed  Google Scholar 

  117. Kuehn M, Kesty N (2005) Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev 19:2645–2655

    Article  CAS  PubMed  Google Scholar 

  118. Janssen R (2017) Circulating desmosine levels in idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 195:A2451

    Google Scholar 

  119. Sze M et al (2015) Loss of GD1-positive Lactobacillus correlates with inflammation in human lungs with COPD. BMJ Open 5:e006677

    Article  PubMed  PubMed Central  Google Scholar 

  120. Li M et al (2017) Lactobacillus-derived extracellular vesicles enhance host immune responses against vancomycin-resistant enterococci. BMC Microbiol 17:1–8

    Article  Google Scholar 

  121. Lanyu Z, Feilong H (2019) Emerging role of extracellular vesicles in lung injury and inflammation. Biomed Pharmacother 113:108748

    Article  PubMed  Google Scholar 

  122. Properzi F, Logozzi M, Fais S (2013) Exosomes: the future of biomarkers in medicine. Biomark Med 7:769–778

    Article  CAS  PubMed  Google Scholar 

  123. Bastarache J et al (2009) Procoagulant alveolar microparticles in the lungs of patients with acute respiratory distress syndrome. Am J Physiol 297:L1035–L1041

    CAS  Google Scholar 

  124. Guervilly C et al (2011) High levels of circulating leukocyte microparticles are associated with better outcome in acute respiratory distress syndrome. Crit Care (London, England) 15:R31

    Article  Google Scholar 

  125. Shaver C et al (2017) Circulating microparticle levels are reduced in patients with ARDS. Crit Care. https://doi.org/10.1186/s13054-017-1700-7

    Article  PubMed  PubMed Central  Google Scholar 

  126. Amabile N et al (2008) Circulating endothelial microparticle levels predict hemodynamic severity of pulmonary hypertension. Am J Respir Crit Care Med 177:1268–1275

    Article  CAS  PubMed  Google Scholar 

  127. Thomashow MA et al (2013) Endothelial microparticles in mild chronic obstructive pulmonary disease and emphysema. The Multi-Ethnic Study of Atherosclerosis Chronic Obstructive Pulmonary Disease study. Am J Respir Crit Care Med 188(1):60–68

    Article  PubMed  PubMed Central  Google Scholar 

  128. Lacedonia D et al (2016) Microparticles in sputum of COPD patients: a potential biomarker of the disease? Int J Chron Obstruct Pulmon Dis 11:527

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Serban K et al (2016) Structural and functional characterization of endothelial microparticles released by cigarette smoke. Sci Rep 6:31596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Letsiou E et al (2014) Pathologic mechanical stress and endotoxin exposure increases lung endothelial microparticle shedding. Am J Respir Cell Mol Biol 52:193

    Article  Google Scholar 

  131. Sun X et al (2012) Sphingosine-1–phosphate receptor–3 is a novel biomarker in acute lung injury. Am J Respir Cell Mol Biol 47:628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yuan Z, Singh B, Sadikot R (2018) Bronchoalveolar lavage exosomes in lipopolysaccharide-induced septic lung injury. J Vis Exp. https://doi.org/10.3791/57737-v

    Article  PubMed  PubMed Central  Google Scholar 

  133. Yang K et al (2015) Changed profile of microRNAs in acute lung injury induced by cardio-pulmonary bypass and its mechanism involved with SIRT1. Int J Clin Exp Pathol 8:1104–1115

    PubMed  PubMed Central  Google Scholar 

  134. Pinkerton M et al (2013) Differential expression of microRNAs in exhaled breath condensates of patients with asthma, patients with chronic obstructive pulmonary disease, and healthy adults. J Allergy Clin Immunol 132:217

    Article  CAS  PubMed  Google Scholar 

  135. Guiot J et al (2019) Exosomal miRNAs in lung diseases: from biologic function to therapeutic targets. J Clin Med 8(9):1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Admyre C et al (2003) Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur Respir J 22(4):578–583

    Article  CAS  PubMed  Google Scholar 

  137. Njock M-S et al (2019) Sputum exosomes: promising biomarkers for idiopathic pulmonary fibrosis. Thorax 74(3):309–312

    Article  PubMed  Google Scholar 

  138. Donaldson A et al (2013) Increased skeletal muscle-specific microRNA in the blood of patients with COPD. Thorax 68(12):1140–1149

    Article  PubMed  Google Scholar 

  139. Burke H et al (2018) Late breaking abstract—differentially expressed exosomal miRNAs target key inflammatory pathways in COPD. Eur Respir Soc. https://doi.org/10.1183/13993003.congress-2018.OA4922

    Article  Google Scholar 

  140. Maes T et al (2016) Asthma inflammatory phenotypes show differential microRNA expression in sputum. J Allergy Clin Immunol 137(5):1433–1446

    Article  CAS  PubMed  Google Scholar 

  141. Suzuki M et al (2016) Altered circulating exosomal RNA profiles detected by next-generation sequencing in patients with severe asthma. Eur Respir J 48:PA3410

    Google Scholar 

  142. Pua HH et al (2016) MicroRNAs 24 and 27 suppress allergic inflammation and target a network of regulators of T helper 2 cell-associated cytokine production. Immunity 44:821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lu T, Munitz A, Rothenberg M (2009) MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol (Baltimore, Md. : 1950) 182:4994–5002

    Article  CAS  Google Scholar 

  144. Lu T et al (2011) MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-γ pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J Immunol (Baltimore, Md. : 1950) 187:3362–3373

    Article  CAS  Google Scholar 

  145. Thery C et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7:1535750

    Article  PubMed  PubMed Central  Google Scholar 

  146. Witwer K et al (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. https://doi.org/10.3402/jev.v2i0.20360

    Article  PubMed  PubMed Central  Google Scholar 

  147. Essandoh K et al (2016) MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response. Shock 46:1

    Article  Google Scholar 

  148. Kim Y-Y, Joh J-S, Lee J (2020) Importance of microbial extracellular vesicle in the pathogenesis of asthma and chronic obstructive pulmonary disease and its diagnostic potential. Asia Pac Allergy 10:e25

    Article  PubMed  PubMed Central  Google Scholar 

  149. Donaldson A et al (2013) Increased skeletal muscle-specific microRNA in the blood of patients with COPD. Thorax 68:1140

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Vice-chancellors of the University of Narowal, Narowal, Pakistan, the University of the Punjab, Lahore, Pakistan, and the University of Okara, Punjab, Pakistan, for providing support for the accomplishment of this study.

Funding

This study received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Babar Khawar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, A., Khawar, M.B., Habiba, U. et al. Diagnostic and therapeutic value of EVs in lungs diseases and inflammation. Mol Biol Rep 51, 26 (2024). https://doi.org/10.1007/s11033-023-09045-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09045-5

Keywords

Navigation