Skip to main content

Advertisement

Log in

Bone marrow mesenchymal stem cells to ameliorate experimental autoimmune encephalomyelitis via modifying expression patterns of miRNAs

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Introduction

Clinical and experimental studies highlighted the significant therapeutic role of Mesenchymal stem cells (MSCs) in neurodegenerative diseases. MSCs possess potent immunomodulatory properties by releasing exosomes, which generate a suitable microenvironment. microRNAs (miRNAs), as one of several effective bioactive molecules of exosomes, influence cellular communication and activities in recipient cells. Recent studies revealed that miRNAs could control the progression of multiple sclerosis (MS) via differentiation and function of T helper cells (Th).

Methods

Here, we investigated the therapeutic effects of syngeneic-derived BM-MSC in experimental autoimmune encephalomyelitis (EAE) mouse model of MS by evaluating expression profile of miRNAs, pro- and anti-inflammatory in serum and brain tissues. Three-time scheme groups (6th day, 6th & 12th days, and 12th day, of post-EAE induction) were applied to determine the therapeutic effects of intraperitoneally received 1*106 of BM-MSCs.

Results

The expression levels of mature isoforms of miR-193, miR-146a, miR-155, miR-21, and miR-326 showed that BM-MSCs treatment attenuated the EAE clinical score and reduced clinical inflammation as well as demyelination. The improved neurological functional outcome associated with enhanced expression of miR-193 and miR-146a, but decreased expression levels of miR-155, miR-21, and miR-326 were followed by suppressing effects on Th1/Th17 immune responses (reduced levels of IFN-\(\gamma\)and IL-17 cytokine expression) and induction of Treg cells, immunoregulatory responses (increase of IL-10, TGF-β, and IL-4) in treatment groups.

Conclusion

Our findings suggest that BM-MSCs administration might change expression patterns of miRNAs and downstream interactions followed by immune system modulation. However, there is a need to carry out future human clinical trials and complementary experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Steinman L (2001) Multiple sclerosis: a two-stage disease. Nat Immunol 2(9):762–764

    Article  CAS  PubMed  Google Scholar 

  2. Lazibat I, Rubinić-Majdak M, Županić S (2018) Multiple sclerosis: new aspects of immunopathogenesis. Acta Clin Croatica 57(2):352

    Google Scholar 

  3. Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164(4):1079–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kallaur AP, Oliveira SR, Simão ANC et al (2017) Cytokine profile in patients with progressive multiple sclerosis and its association with disease progression and disability. Mol Neurobiol 54:2950–2960

    Article  CAS  PubMed  Google Scholar 

  5. Gharibi S, Moghimi B, Haghmorad D et al (2019) Altered expression patterns of complement factor H and miR-146a genes in acute‐chronic phases in experimental autoimmune encephalomyelitis mouse. J Cell Physiol 234(11):19842–19851

    Article  CAS  PubMed  Google Scholar 

  6. Xie Z-X, Zhang H-L, Wu X-J, Zhu J, Ma D-H, Jin T (2015) Role of the immunogenic and tolerogenic subsets of dendritic cells in multiple sclerosis. Mediators of inflammation. ;2015

  7. Fletcher JM, Lalor S, Sweeney C, Tubridy N, Mills K (2010) T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Experimental Immunol 162(1):1–11

    Article  CAS  Google Scholar 

  8. Ghannam S, Bouffi C, Djouad F, Jorgensen C, Noël D (2010) Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res Ther 1(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang X, Omar O, Vazirisani F, Thomsen P, Ekstrom K (2018) Mesenchymal stem cell-derived exosomes have altered microRNA profiles and induce osteogenic differentiation depending on the stage of differentiation. 13(2):e0193059. https://doi.org/10.1371/journal.pone.0193059

  10. Cheng L, Zhang K, Wu S, Cui M, Xu T (2017) Focus on mesenchymal stem cell-derived Exosomes: Opportunities and Challenges in Cell-Free Therapy. Stem Cells International 2017:6305295–6305295. https://doi.org/10.1155/2017/6305295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu B, Zhang X, Li X (2014) Exosomes derived from mesenchymal stem cells. Int J Mol Sci 15(3):4142–4157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteom 73(10):1907–1920

    Article  CAS  Google Scholar 

  13. Holley CL, Topkara VK (2011) An introduction to small non-coding RNAs: miRNA and snoRNA. Cardiovasc Drugs Ther 25(2):151–159

    Article  CAS  PubMed  Google Scholar 

  14. Yang X, Wu Y, Zhang B, Ni B (2018) Noncoding RNAs in multiple sclerosis. Clin Epigenetics 10(1):1–12

    Article  Google Scholar 

  15. Mortazavi-Jahromi SS, Aslani M, Mirshafiey A (2020) A comprehensive review on miR-146a molecular mechanisms in a wide spectrum of immune and non-immune inflammatory diseases. Immunol Lett.

  16. Moore C, Kennedy T, Antel J, Bar-Or A, Dhaunchak A (2013) MicroRNA dysregulation in multiple sclerosis. Front Genet 3:311

    PubMed  PubMed Central  Google Scholar 

  17. Gandhi R, Healy B, Gholipour T et al (2013) Circulating microRNAs as biomarkers for disease staging in multiple sclerosis. Ann Neurol 73(6):729–740

    Article  CAS  PubMed  Google Scholar 

  18. Gharibi S, Moghimi B, Tahoori MT, Mahmudi MB, Shahvazian E, Yazd EF (2018) The mMiR-223: an inflammatory MicroRNA involved in pathogenesis of multiple sclerosis. Int J Med Lab.

  19. Liu C, Yang H, Shi W, Wang T, Ruan Q (2018) Micro RNA-mediated regulation of T helper type 17/regulatory T‐cell balance in autoimmune disease. Immunology 155(4):427–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fenoglio C, Ridolfi E, Galimberti D, Scarpini E (2012) MicroRNAs as active players in the pathogenesis of multiple sclerosis. Int J Mol Sci 13(10):13227–13239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Orefice NS, Guillemot-Legris O, Capasso R et al (2020) miRNA profile is altered in a modified EAE mouse model of multiple sclerosis featuring cortical lesions. Elife 9:e56916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu S, Pan W, Qian Y (2013) MicroRNA in immunity and autoimmunity. J Mol Med 91(9):1039–1050

    Article  CAS  PubMed  Google Scholar 

  23. Maciak K, Dziedzic A, Miller E, Saluk-Bijak J (2021) miR-155 as an important Regulator of multiple sclerosis pathogenesis. A review. Int J Mol Sci 22(9):4332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Angelou CC, Wells AC, Vijayaraghavan J et al (2020) Differentiation of pathogenic Th17 cells is negatively regulated by Let-7 microRNAs in a mouse model of multiple sclerosis. Front Immunol 10:3125

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shahla J, Dariush H, Bijan SM, Majid E, Zahra A, Bahman Y (2021) Comparative immunomodulatory effects of jelly royal and 10-H2DA on experimental autoimmune encephalomyelitis. Gene Rep. :101217

  26. Soltanmohammadi A, Tavaf MJ, Zargarani S et al (2022) Daphnetin alleviates experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells and upregulating Th2 and regulatory T cells. Acta Neurobiol Exp 82(3):273–283. https://doi.org/10.55782/ane-2022-026

    Article  Google Scholar 

  27. Haghmorad D, Yazdanpanah E, Sadighimoghaddam B et al (2021) Kombucha ameliorates experimental autoimmune encephalomyelitis through activation of Treg and Th2 cells. Acta Neurol Belgica Dec 121(6):1685–1692. https://doi.org/10.1007/s13760-020-01475-3

    Article  Google Scholar 

  28. Haghmorad D, Yazdanpanah E, Jadid Tavaf M et al Prevention and treatment of experimental autoimmune encephalomyelitis induced mice with 1, 25-dihydroxyvitamin D3. Neurological research. Aug 12 2019:1–15. https://doi.org/10.1080/01616412.2019.1650218

  29. Berard JL, Wolak K, Fournier S, David S (2010) Characterization of relapsing-remitting and chronic forms of experimental autoimmune encephalomyelitis in C57BL/6 mice. Glia Mar 58(4):434–445. https://doi.org/10.1002/glia.20935

    Article  Google Scholar 

  30. Warth SC, Hoefig KP, Hiekel A et al (2015) Induced miR-99a expression represses Mtor cooperatively with miR‐150 to promote regulatory T‐cell differentiation. EMBO J 34(9):1195–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rawat S, Gupta S, Mohanty S (2019) Mesenchymal stem cells modulate the immune system in developing therapeutic interventions. Immune Response Act Immunomodul.

  32. Yousefi F, Ebtekar M, Soudi S, Soleimani M, Hashemi SM (2016) In vivo immunomodulatory effects of adipose-derived mesenchymal stem cells conditioned medium in experimental autoimmune encephalomyelitis. Immunol Lett Apr 172:94–105. https://doi.org/10.1016/j.imlet.2016.02.016

    Article  CAS  Google Scholar 

  33. Sugaya K, Vaidya M (2018) Stem cell therapies for neurodegenerative diseases. Exosomes Stem Cells and MicroRNA: Aging Cancer and Age Related Disorders. :61–84

  34. Saldaña L, Bensiamar F, Vallés G, Mancebo FJ, García-Rey E, Vilaboa N (2019) Immunoregulatory potential of mesenchymal stem cells following activation by macrophage-derived soluble factors. Stem Cell Res Ther 10(1):1–15

    Article  Google Scholar 

  35. Bassi ÊJ, de Almeida DC, Moraes-Vieira PMM, Câmara NOS (2012) Exploring the role of soluble factors associated with immune regulatory properties of mesenchymal stem cells. Stem Cell Reviews and Reports 8(2):329–342

    Article  CAS  PubMed  Google Scholar 

  36. Toh WS, Zhang B, Lai RC, Lim SK (2018) Immune regulatory targets of mesenchymal stromal cell exosomes/small extracellular vesicles in tissue regeneration. Cytotherapy 20(12):1419–1426

    Article  CAS  PubMed  Google Scholar 

  37. Podshivalova K, Salomon DR (2013) MicroRNA regulation of T-lymphocyte immunity: modulation of molecular networks responsible for T-cell activation, differentiation, and development. Crit Reviews™ Immunol. ;33(5)

  38. Ulivieri C, Baldari CT (2017) Regulation of T cell activation and differentiation by extracellular vesicles and their pathogenic role in systemic lupus erythematosus and multiple sclerosis. Molecules 22(2):225

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fernández-Messina L, Gutiérrez‐Vázquez C, Rivas‐García E, Sánchez‐Madrid F, de la Fuente H (2015) Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biol Cell 107(3):61–77

    Article  PubMed  PubMed Central  Google Scholar 

  40. Garcia G, Pinto S, Cunha M, Fernandes A, Koistinaho J, Brites D (2021) Neuronal dynamics and mirna signaling differ between sh-sy5y appswe and psen1 mutant ipsc-derived ad models upon modulation with mir-124 mimic and inhibitor. Cells 10(9):2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dobrowolny G, Martone J, Lepore E et al (2021) A longitudinal study defined circulating microRNAs as reliable biomarkers for disease prognosis and progression in ALS human patients. Cell Death Discovery 7(1):1–11

    Article  Google Scholar 

  42. He S, Huang L, Shao C et al (2021) Several miRNAs derived from serum extracellular vesicles are potential biomarkers for early diagnosis and progression of Parkinson’s disease. Translational Neurodegeneration 10(1):1–12

    Article  Google Scholar 

  43. Chen C, Zhou Y, Wang J, Yan Y, Peng L, Qiu W (2018) Dysregulated MicroRNA involvement in multiple sclerosis by induction of T helper 17 cell differentiation. Front Immunol 9:1256

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mathieu J, Ruohola-Baker H (2013) Regulation of stem cell populations by microRNAs. Transcriptional and Translational Regulation of Stem Cells. :329–351

  45. Thamilarasan M, Koczan D, Hecker M, Paap B, Zettl UK (2012) MicroRNAs in multiple sclerosis and experimental autoimmune encephalomyelitis. Autoimmun rev 11(3):174–179

    Article  CAS  PubMed  Google Scholar 

  46. Ha T-Y (2011) The role of microRNAs in regulatory T cells and in the immune response. Immune Netw 11(1):11–41

    Article  PubMed  PubMed Central  Google Scholar 

  47. Raphael I, Nalawade S, Eagar TN, Forsthuber TG (2015) T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74(1):5–17

    Article  CAS  PubMed  Google Scholar 

  48. Zhang J, Zhang ZG, Lu M, Zhang Y, Shang X, Chopp M (2019) MiR-146a promotes oligodendrocyte progenitor cell differentiation and enhances remyelination in a model of experimental autoimmune encephalomyelitis. Neurobiol Dis 125:154–162

    Article  CAS  PubMed  Google Scholar 

  49. Wang C-r, Zhu H-f, Zhu Y (2019) Knockout of microRNA-155 ameliorates the Th17/Th9 immune response and promotes wound healing. Curr Med Sci 39(6):954–964

    Article  CAS  PubMed  Google Scholar 

  50. Hu J, Huang C-X, Rao P-P et al (2019) Inhibition of microRNA-155 attenuates sympathetic neural remodeling following myocardial infarction via reducing M1 macrophage polarization and inflammatory responses in mice. Eur J Pharmacol 851:122–132

    Article  CAS  PubMed  Google Scholar 

  51. Du C, Liu C, Kang J et al (2009) MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 10(12):1252–1259

    Article  CAS  PubMed  Google Scholar 

  52. Amici SA, Dong J, Guerau-de-Arellano M (2017) Molecular mechanisms modulating the phenotype of macrophages and microglia. Front Immunol 8:1520

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by grant no. 1587 from Semnan University of Medical Sciences (SEMUMS) research council.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. BY and DH methodology; A. K. software; A. S. validation; M. E. M. T. and M. D. formal analysis; (A) K. investigation; M. T writing-original draft preparation; V. O. writing-review and editing, DH; (B) Y. project administration. All authors have read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to Bahman Yousefi.

Ethics declarations

Ethics approval and consent to participate

All experiments were carried out in agreement with protocols approved by the ethics committee of Semnan University of Medical Sciences in Semnan, Iran (IRCT: IR.SEMUMS.REC.1398.46, ID: 1587).

Conflict of interest

All authors declare no financial or commercial conflict of interest; none have any non-financial conflict of interest.

DOI and license of Preprint

Posted Date: January 25th, 2022 DOI: https://doi.org/10.21203/rs.3.rs-1260157/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghmorad, D., Khaleghian, A., Eslami, M. et al. Bone marrow mesenchymal stem cells to ameliorate experimental autoimmune encephalomyelitis via modifying expression patterns of miRNAs. Mol Biol Rep 50, 9971–9984 (2023). https://doi.org/10.1007/s11033-023-08843-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08843-1

Keywords

Navigation