Skip to main content
Log in

Association between polymorphisms of TLR2-1-6 and bipolar disorder in a tunisian population

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Bipolar disorder (BD) is a complex neuropsychiatric disease that has been strongly linked to immune dysregulation. In particular, an abnormal inflammatory response mediated by toll-like receptor 2 − 1/6 (TLR2-1/6) was described in BD. Nevertheless, genetic factors’ contribution is still unknown. Thus, we suggested that functional polymorphisms of TLR2, 1 and 6 could be involved in BD predisposition.

Methods and results

TLR2, 1 and 6 polymorphisms were genotyped by PCR-RFLP in 292 controls and 131 patients from a Tunisian population. Polymorphisms and haplotype associations were explored in BD and binary logistic regression analysis was performed for more powerful associations. In dominant model, we found a significantly higher genotype and minor allele frequencies in healthy females compared to patients for TLR2-196-174Ins/Del (p = 0.04; OR = 0.3, p = 0.04; OR = 0.3, respectively) and for TLR6-S249P only with minor allele (p = 0.03; OR = 0.2). In contrast, TLR2-R677W CT + TT and T allele frequencies were significantly higher in BD (padjusted<10− 4; ORadjusted =46.6, p < 10− 4; OR = 6.3, respectively), specifically in females (CT + TT: 100%). Similarly, TLR1-R80T showed significantly increased GC + CC and C allele frequencies in patients compared to controls (padjusted=0.04; ORadjusted=4, p = 0.009; OR = 4.3, respectively). Moreover, haplotype investigation demonstrated that InsGTCGT (p < 10− 4, OR = 275) and delGCCGT (p = 0.03, OR = 18.5) were significantly overrepresented in BD patients compared to controls.

Conclusions

We suggest that TLR2-196-174Ins/Del and TLR6-S249P could be protective factors of females against BD. However, TLR2-R677W and TLR1-R80T could be strongly associated with higher risk of BD. Interestingly, TLR2-R677W could be a genetic marker for BD in females. However, further studies with larger groups are needed to confirm these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Barnett JH, Smoller JW (2009) The genetics of bipolar disorder. Neuroscience 164:331–343. https://doi.org/10.1016/j.neuroscience.2009.03.080

    Article  CAS  PubMed  Google Scholar 

  2. Moreira ALR, Van Meter A, Genzlinger J, Youngstrom EA (2017) Review and Meta-analysis of epidemiologic studies of adult bipolar disorder. J Clin Psychiatry 78:e1259–e1269. https://doi.org/10.4088/JCP.16r11165

    Article  PubMed  Google Scholar 

  3. Benedetti F, Aggio V, Pratesi ML et al (2020) Neuroinflammation in Bipolar Depression. Front Psychiatry 11:71. https://doi.org/10.3389/fpsyt.2020.00071

    Article  PubMed  PubMed Central  Google Scholar 

  4. Agarwal K, Manza P, Chapman M et al (2022) Inflammatory markers in Substance Use and Mood Disorders: a neuroimaging perspective. Front Psychiatry 13:863734. https://doi.org/10.3389/fpsyt.2022.863734

    Article  PubMed  PubMed Central  Google Scholar 

  5. Akira S, Uematsu S, Takeuchi O (2006) Pathogen Recognition and Innate Immunity. Cell 124:783–801. https://doi.org/10.1016/j.cell.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  6. Piccinini AM, Midwood KS (2010) DAMPening inflammation by modulating TLR Signalling. Mediators Inflamm 2010–672395. https://doi.org/10.1155/2010/672395

  7. Okun E, Griffioen KJ, Mattson MP (2011) Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci 34:269–281. https://doi.org/10.1016/j.tins.2011.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Okun E, Griffioen KJ, Gen Son T et al (2010) TLR2 activation inhibits embryonic neural progenitor cell proliferation. J Neurochem 114:462–474. https://doi.org/10.1111/j.1471-4159.2010.06778.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rolls A, Shechter R, London A et al (2007) Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol 9:1081–1088. https://doi.org/10.1038/ncb1629

    Article  CAS  PubMed  Google Scholar 

  10. Orhan F, Bhat M, Sandberg K et al (2016) Tryptophan Metabolism along the kynurenine pathway downstream of toll-like receptor stimulation in Peripheral Monocytes. Scand J Immunol 84:262–271. https://doi.org/10.1111/sji.12479

    Article  CAS  PubMed  Google Scholar 

  11. Kielian T, Esen N, Bearden ED (2005) Toll-like receptor 2 (TLR2) is pivotal for recognition of S. aureus peptidoglycan but not intact bacteria by microglia. Glia 49:567–576. https://doi.org/10.1002/glia.20144

    Article  PubMed  PubMed Central  Google Scholar 

  12. Watkins CC, Sawa A, Pomper MG (2014) Glia and immune cell signaling in bipolar disorder: insights from neuropharmacology and molecular imaging to clinical application. Transl Psychiatry 4:e350–e350. https://doi.org/10.1038/tp.2013.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wieck A, Grassi-Oliveira R, do Prado CH et al (2016) Toll-like receptor expression and function in type I bipolar disorder. Brain Behav Immun 54:110–121. https://doi.org/10.1016/j.bbi.2016.01.011

    Article  CAS  PubMed  Google Scholar 

  14. McKernan DP, Dennison U, Gaszner G et al (2011) Enhanced peripheral toll-like receptor responses in psychosis: further evidence of a pro-inflammatory phenotype. Transl Psychiatry 1:e36. https://doi.org/10.1038/tp.2011.37

    Article  CAS  PubMed Central  Google Scholar 

  15. Schröder NWJ, Hermann C, Hamann L et al (2003) High frequency of polymorphism Arg753Gln of the toll-like receptor-2 gene detected by a novel allele-specific PCR. J Mol Med 81:368–372. https://doi.org/10.1007/s00109-003-0443-x

    Article  CAS  PubMed  Google Scholar 

  16. Noguchi E, Nishimura F, Fukai H et al (2004) An association study of asthma and total serum immunoglobin E levels for toll-like receptor polymorphisms in a japanese population. Clin Exp Allergy 34:177–183. https://doi.org/10.1111/j.1365-2222.2004.01839.x

    Article  CAS  PubMed  Google Scholar 

  17. Pattabiraman G, Panchal R, Medvedev AE (2017) The R753Q polymorphism in toll-like receptor 2 (TLR2) attenuates innate immune responses to mycobacteria and impairs MyD88 adapter recruitment to TLR2. J Biol Chem 292:10685–10695. https://doi.org/10.1074/jbc.M117.784470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Plantinga TS, Johnson MD, Scott WK et al (2012) Toll-like receptor 1 polymorphisms increase susceptibility to candidemia. J Infect Dis 205:934–943. https://doi.org/10.1093/infdis/jir867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Randhawa AK, Shey MS, Keyser A et al (2011) Association of human TLR1 and TLR6 deficiency with altered immune responses to BCG vaccination in south african infants. PLoS Pathog 7:e1002174. https://doi.org/10.1371/journal.ppat.1002174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park SJ, Lee JY, Kim SJ et al (2015) Toll-like receptor-2 deficiency induces schizophrenia-like behaviors in mice. Sci Rep 5:8502. https://doi.org/10.1038/srep08502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Georgel P, Macquin C, Bahram S (2009) The heterogeneous allelic repertoire of Human Toll-Like receptor (TLR) genes. PLoS ONE 4:e7803. https://doi.org/10.1371/journal.pone.0007803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Craddock N, Forty L (2006) Genetics of affective (mood) disorders. Eur J Hum Genet 14:660–668. https://doi.org/10.1038/sj.ejhg.5201549

    Article  CAS  PubMed  Google Scholar 

  23. Lien Y-J, Tsuang H-C, Chiang A et al (2010) The multidimensionality of schizotypy in nonpsychotic relatives of patients with schizophrenia and its applications in ordered subsets linkage analysis of schizophrenia. Am J Med Genet B Neuropsychiatr Genet 153B:1–9. https://doi.org/10.1002/ajmg.b.30948

    Article  PubMed  Google Scholar 

  24. Kang WS, Park JK, Lee SM et al (2013) Association between genetic polymorphisms of toll-like receptor 2 (TLR2) and schizophrenia in the korean population. Gene 526:182–186. https://doi.org/10.1016/j.gene.2013.04.058

    Article  CAS  PubMed  Google Scholar 

  25. Aflouk Y, Inoubli O, Saoud H et al (2021) Association between TLR2 polymorphisms (– 196–174 Ins/Del, R677W, R753Q, and P631H) and schizophrenia in a tunisian population. Immunol Res 69:541–552. https://doi.org/10.1007/s12026-021-09238-9

    Article  CAS  PubMed  Google Scholar 

  26. Oliveira J, Hamdani N, Busson M et al (2014) Association between toll-like receptor 2 gene diversity and early-onset bipolar disorder. J Affect Disord 165:135–141. https://doi.org/10.1016/j.jad.2014.04.059

    Article  CAS  PubMed  Google Scholar 

  27. Bell CC (1994) DSM-IV: Diagnostic and Statistical Manual of Mental Disorders. JAMA J Am Med Assoc 272:828. https://doi.org/10.1001/jama.1994.03520100096046

    Article  Google Scholar 

  28. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215. https://doi.org/10.1093/nar/16.3.1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jotic A, Jesic S, Zivkovic M et al (2015) Polymorphisms in toll-like receptors 2 and 4 genes and their expression in chronic suppurative otitis media. Auris Nasus Larynx 42:431–437. https://doi.org/10.1016/j.anl.2015.04.010

    Article  PubMed  Google Scholar 

  30. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723. https://doi.org/10.1109/TAC.1974.1100705

    Article  Google Scholar 

  31. Zidi S, Sghaier I, Gazouani E et al (2016) Evaluation of toll-like receptors 2/3/4/9 gene polymorphisms in Cervical Cancer Evolution. Pathol Oncol Res 22:323–330. https://doi.org/10.1007/s12253-015-0009-6

    Article  CAS  PubMed  Google Scholar 

  32. Semlali A, Almutairi M, Rouabhia M et al (2018) Novel sequence variants in the TLR6 gene associated with advanced breast cancer risk in the saudi arabian population. PLoS ONE 13:e0203376. https://doi.org/10.1371/journal.pone.0203376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Junpee A, Tencomnao T, Sanprasert V, Nuchprayoon S (2010) Association between toll-like receptor 2 (TLR2) polymorphisms and asymptomatic bancroftian filariasis. Parasitol Res 107:807–816. https://doi.org/10.1007/s00436-010-1932-9

    Article  PubMed  Google Scholar 

  34. Nischalke H-D, Coenen M, Berger C et al (2012) The toll-like receptor 2 (TLR2) -196 to -174 del/ins polymorphism affects viral loads and susceptibility to hepatocellular carcinoma in chronic hepatitis C. Int J Cancer 130:1470–1475. https://doi.org/10.1002/ijc.26143

    Article  CAS  PubMed  Google Scholar 

  35. Larsson MK, Schwieler L, Goiny M et al (2015) Chronic antipsychotic treatment in the rat – Effects on Brain Interleukin-8 and Kynurenic Acid. Int J Tryptophan Res 8:49–52. https://doi.org/10.4137/IJTR.S25915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Du S-H, Zhang W, Yue X et al (2018) Role of CXCR1 and Interleukin-8 in Methamphetamine-Induced neuronal apoptosis. Front Cell Neurosci 12:230. https://doi.org/10.3389/fncel.2018.00230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shey MS, Randhawa AK, Bowmaker M et al (2010) Single nucleotide polymorphisms in toll-like receptor 6 are associated with altered lipopeptide- and mycobacteria-induced interleukin-6 secretion. Genes Immun 11:561–572. https://doi.org/10.1038/gene.2010.14

    Article  CAS  PubMed  Google Scholar 

  38. Roman KM, Jenkins AK, Lewis DA, Volk DW (2021) Involvement of the nuclear factor-κB transcriptional complex in prefrontal cortex immune activation in bipolar disorder. Transl Psychiatry 11:40. https://doi.org/10.1038/s41398-020-01092-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Erhardt S, Schwieler L, Imbeault S, Engberg G (2017) The kynurenine pathway in schizophrenia and bipolar disorder. Neuropharmacology 112:297–306. https://doi.org/10.1016/j.neuropharm.2016.05.020

    Article  CAS  PubMed  Google Scholar 

  40. Jesudas BR, Nandeesha H, Menon V, Allimuthu P (2020) Relationship of elevated neural cell adhesion molecule 1 with interleukin-10 and disease severity in bipolar disorder. Asian J Psychiatr 47:101849. https://doi.org/10.1016/j.ajp.2019.101849

    Article  PubMed  Google Scholar 

  41. Ichiyama T, Okada K, Lipton JM et al (2000) Sodium valproate inhibits production of TNF-α and IL-6 and activation of NF-κB. Brain Res 857:246–251. https://doi.org/10.1016/S0006-8993(99)02439-7

    Article  CAS  PubMed  Google Scholar 

  42. Yu J-T, Sun Y-P, Ou J-R et al (2011) No association of toll-like receptor 2 polymorphisms with Alzheimer’s disease in Han Chinese. Neurobiol Aging. https://doi.org/10.1016/j.neurobiolaging.2011.03.023. 32:1924.e1-1924.e3

  43. Ben-Ali M, Barbouche MR, Bousnina S et al (2004) Toll-like receptor 2 Arg677Trp polymorphism is associated with susceptibility to tuberculosis in tunisian patients. Clin Diagn Lab Immunol 11:625–626. https://doi.org/10.1128/CDLI.11.3.625-626.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abida O, Bahloul E, Elloumi N et al (2020) Toll-like-receptor gene polymorphisms in tunisian endemic Pemphigus Foliaceus. Biomed Res Int 2020:6541761. https://doi.org/10.1155/2020/6541761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ajili F, Boubaker S, Derouiche A et al (2010) Relationship between toll-like receptor 2 nonsynonymous single nucleotide polymorphisms and the effectiveness of Bacille Calmette-Guérin immunotherapy in preventing recurrence of superficial bladder cancer: a prospective study. Curr Ther Res - Clin Exp 71:398–407. https://doi.org/10.1016/S0011-393X(10)80005-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kormann MSD, Ferstl R, Depner M et al (2009) Rare TLR2 mutations reduce TLR2 receptor function and can increase atopy risk. Allergy 64:636–642. https://doi.org/10.1111/j.1398-9995.2008.01891.x

    Article  CAS  PubMed  Google Scholar 

  47. Kang T-J, Chung EY, Byoung CK et al (2004) Differential production of interleukin-10 and interleukin-12 in mononuclear cells from leprosy patients with a toll-like receptor 2 mutation. Immunology 112:674–680. https://doi.org/10.1111/j.1365-2567.2004.01926.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mccomsey GA, Godfrey C, Aweeka F (2015) Toll-like Receptor-1 (TLR1), TLR2 and TLR6 gene polymorphisms are Associated with increased susceptibility to complicated skin and skin. J Infect Dis 1:1–32

    Google Scholar 

  49. Mao R, Zhang C, Chen J et al (2018) Different levels of pro- and anti-inflammatory cytokines in patients with unipolar and bipolar depression. J Affect Disord 237:65–72. https://doi.org/10.1016/j.jad.2018.04.115

    Article  CAS  PubMed  Google Scholar 

  50. Gilmore JH, Jarskog LF, Vadlamudi S, Lauder JM (2004) Prenatal infection and risk for schizophrenia: IL-1β, IL-6, and TNFα inhibit cortical neuron dendrite development. Neuropsychopharmacology 29:1221–1229. https://doi.org/10.1038/sj.npp.1300446

    Article  CAS  PubMed  Google Scholar 

  51. Ameele S, Nuijs AL, Lai FY et al (2020) A mood state-specific interaction between kynurenine metabolism and inflammation is present in bipolar disorder. Bipolar Disord 22:59–69. https://doi.org/10.1111/bdi.12814

    Article  CAS  PubMed  Google Scholar 

  52. Lombardi AL, Manfredi L, Conversi D (2023) How does IL-6 change after combined treatment in MDD patients? A systematic review. Brain Behav Immun - Heal 27:100579. https://doi.org/10.1016/j.bbih.2022.100579

    Article  CAS  Google Scholar 

  53. de Marco A, Scozia G, Manfredi L, Conversi D (2022) A systematic review of genetic polymorphisms Associated with bipolar disorder comorbid to substance abuse. Genes (Basel) 13:1303. https://doi.org/10.3390/genes13081303

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are deeply thankful to all members of the Psychiatry Department of CHU Fattouma Bourguiba of Monastir and the Regional Center of Blood Transfusion of the same hospital and of CHU Farhat Hached of Sousse for providing us with samples and clinical information of all subjects.

Funding

Our study was supported by the Tunisian Ministry of Higher Education and Scientific Research, Tunisia.

Author information

Authors and Affiliations

Authors

Contributions

Besma Bel Hadj Jrad and Youssef Aflouk contributed to the design and conception of the study. Youssef Aflouk performed experiments in the laboratory and manuscript writing. All authors participated in data collection, analysis, and data interpretation. Besma Bel Hadj Jrad was responsible for manuscript correction and revision. All authors read and agreed on the final version of the manuscript.

Corresponding author

Correspondence to Youssef Aflouk.

Ethics declarations

Ethics approval

The ethical committee of research in life and health sciences of the Higher Institute of Biotechnology of Monastir, Tunisia approved this study, following Helsinki Declaration of 2013. Written informed consent was obtained from all subjects included in the study or from patients’ family member.

Consent to participate

Written informed consent was obtained from all subjects included in the study or from patients’ family member.

Consent to publish

All participants provide informed consent for the publication of the study.

Competing interests

All authors have no potential interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aflouk, Y., Inoubli, O., Kenz, A. et al. Association between polymorphisms of TLR2-1-6 and bipolar disorder in a tunisian population. Mol Biol Rep 50, 8877–8888 (2023). https://doi.org/10.1007/s11033-023-08758-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08758-x

Keywords

Navigation