Skip to main content

Advertisement

Log in

Association between TLR2 polymorphisms (− 196–174 Ins/Del, R677W, R753Q, and P631H) and schizophrenia in a Tunisian population

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Since immune dysregulation has been well studied in schizophrenia pathophysiology, recent studies showed a potent role of TLR2 in neuroinflammation process underlying schizophrenia pathogenesis. However, the genetic predisposition is still unclear. Thus, we hypothesized that TLR2 polymorphisms − 196–174 Ins/Del (rs111200466), R753Q (rs5743708), R677W (rs121917864), and P631H (rs5743704) could be involved in schizophrenia predisposition. A case–control study was performed on a Tunisian population composed of 250 healthy controls and 250 patients genotyped by PCR–RFLP. Genotype and allele distribution were evaluated with sex, schizophrenia subtypes, and other clinical features. We also assessed a haplotype analysis for TLR2 polymorphisms with schizophrenia. Our results showed higher ins/del genotype frequency in healthy women compared to patients (p = 0.006; OR = 0.2). In the other hand, logistic regression showed higher ins/del genotype frequency in controls compared to paranoid patients (p = 0.05; OR = 0.48, adjusted). Frequencies of CT and T allele of R677W were significantly higher in patients compared to controls (p < 10−4, OR = 10.39; p < 10−4, OR = 4, adjusted, respectively). R753Q polymorphism was exclusively detected in patients (GA + AA = 2.5%) particularly in men with disorganized subtype. P631H did not show any association with schizophrenia. Finally, haplotype analysis showed that InsGTC and delGTC were associated with higher risk of schizophrenia (p = 0.0001, OR = 8.58; p = 0.04, OR = 5.01, respectively). In the Tunisian population, our results suggested that TLR2 R677W could be associated with susceptibility for schizophrenia, while − 196–174 Ins/Del suggested a trend of protection in women. Otherwise, R753Q could have an effect on schizophrenia especially for disorganized subgroup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Owen MJ, Sawa A, Mortensen PB. Schizophrenia. 2016;388:86–97.

    Google Scholar 

  2. McGrath J, Saha S, Chant D, Welham J. Schizophrenia: A concise overview of incidence, prevalence, and mortality. Epidemiol Rev. 2008;30:67–6.

  3. Douki S, Nacef F, Ben zineb S, Ben Amor C. Schizophrénie et culture : réalités et perspectives à partir de l’expérience tunisienne. Encephale. 2007;33(1):21–9.

  4. Bell CC. DSM-IV: diagnostic and statistical manual of mental disorders. JAMA J Am Med Assoc. 1994;272:828.

    Article  Google Scholar 

  5. Ayhan Y, McFarland R, Pletnikov MV. Animal models of gene-environment interaction in schizophrenia: A dimensional perspective. Prog Neurobiol. 2016;136:1–27.

  6. Misiak B, Stramecki F, Gawęda Ł, Prochwicz K, Sąsiadek MM, Moustafa AA, et al. Interactions between variation in candidate genes and environmental factors in the etiology of schizophrenia and bipolar disorder: a systematic review. Mol Neurobiol. 2018;55:5075–100.

    Article  CAS  PubMed  Google Scholar 

  7. Allswede DM, Cannon TD. Prenatal inflammation and risk for schizophrenia: a role for immune proteins in neurodevelopment. Dev Psychopathol. 2018;30:1157–78.

    Article  PubMed  Google Scholar 

  8. Comer AL, Carrier M, Tremblay M-È, Cruz-Martín A. The inflamed brain in schizophrenia: the convergence of genetic and environmental risk factors that lead to uncontrolled neuroinflammation. Front Cell Neurosci. 2020;14:274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2011;70:663–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brown AS, Vinogradov S, Kremen WS, Poole JH, Deicken RF, Penner JD, et al. Prenatal exposure to maternal infection and executive dysfunction in adult schizophrenia. Am J Psychiatry. 2009;166:683–90.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gilmore JH, Jarskog LF, Vadlamudi S, Lauder JM. Prenatal infection and risk for schizophrenia: IL-1β, IL-6, and TNFα inhibit cortical neuron dendrite development. Neuropsychopharmacology. 2004;29(7):1221–9.

  12. Gilmore JH, Jarskog LF. Exposure to infection and brain development: cytokines in the pathogenesis of schizophrenia. Schizophr Res. 1997;24:365–7.

    Article  CAS  PubMed  Google Scholar 

  13. Hagberg H, Gressens P, Mallard C. Inflammation during fetal and neonatal life: Implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol. 2012;71(4):444–57.

  14. Hagberg H, Mallard C, Jacobsson B. Role of cytokines in preterm labour and brain injury. BJOG An Int J Obstet Gynaecol. 2005;112(Suppl 1):16–8.

  15. Brown AS, Begg MD, Gravenstein S, Schaefer CA, Wyatt RJ, Bresnahan M, et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry. 2004;61:774–80.

    Article  PubMed  Google Scholar 

  16. Brown AS, Cohen P, Harkavy-Friedman J, Babulas V, Malaspina D, Gorman JM, et al. Prenatal rubella, premorbid abnormalities, and adult schizophrenia. Biol Psychiatry. 2001;49:473–86.

    Article  CAS  PubMed  Google Scholar 

  17. Gumusoglu SB, Stevens HE. Maternal inflammation and neurodevelopmental programming: A review of preclinical outcomes and implications for translational psychiatry. Biol Psychiatry. 2019;85(2):107–21.

  18. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.

  19. Piccinini AM, Midwood KS. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010;2010:672395.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kielian T. Toll-like receptors in central nervous system glial inflammation and homeostasis. J Neurosci Res. 2006;83:711–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Olson JK, Miller SD. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol. 2004;173:3916–24.

    Article  CAS  PubMed  Google Scholar 

  22. Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, et al. TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol. 2005;175:4320–30.

    Article  CAS  PubMed  Google Scholar 

  23. Bsibsi M, Ravid R, Gveric D, Van Noort JM. Broad expression of toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol. 2002;61:1013–21.

    Article  CAS  PubMed  Google Scholar 

  24. Dzamko N, Gysbers A, Perera G, Bahar A, Shankar A, Gao J, et al. Toll-like receptor 2 is increased in neurons in Parkinson’s disease brain and may contribute to alpha-synuclein pathology. Acta Neuropathol. 2017;133:303–19.

    Article  CAS  PubMed  Google Scholar 

  25. Bsibsi M, Nomden A, van Noort JM, Baron W. Toll-like receptors 2 and 3 agonists differentially affect oligodendrocyte survival, differentiation, and myelin membrane formation. J Neurosci Res. 2012;90:388–98.

    Article  CAS  PubMed  Google Scholar 

  26. Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R, et al. Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol. 2007;9:1081–8.

    Article  CAS  PubMed  Google Scholar 

  27. Okun E, Griffioen KJ, Gen Son T, Lee JH, Roberts NJ, Mughal MR, et al. TLR2 activation inhibits embryonic neural progenitor cell proliferation. J Neurochem. 2010;114:462–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kielian T, Esen N, Bearden ED. Toll-like receptor 2 (TLR2) is pivotal for recognition of S. aureus peptidoglycan but not intact bacteria by microglia. Glia. 2005;49:567–76.

    Article  PubMed  PubMed Central  Google Scholar 

  29. van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, et al. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry. 2008;64:820–2.

    Article  PubMed  Google Scholar 

  30. Monji A, Kato TA, Mizoguchi Y, Horikawa H, Seki Y, Kasai M, et al. Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuro-Psychopharmacology Biol Psychiatry. 2013;42:115–21.

    Article  CAS  Google Scholar 

  31. Howes OD, McCutcheon R. Inflammation and the neural diathesis-stress hypothesis of schizophrenia: A reconceptualization. Transl Psychiatry. 2017;7(2):e1024.

  32. Kozłowska E, Agier J, Wysokiński A, Łucka A, Sobierajska K, Brzezińska-Błaszczyk E. The expression of toll-like receptors in peripheral blood mononuclear cells is altered in schizophrenia. Psychiatry Res. 2019;272:540–50.

    Article  PubMed  Google Scholar 

  33. Kéri S, Szabó C, Kelemen O. Antipsychotics influence toll-like receptor (TLR) expression and its relationship with cognitive functions in schizophrenia. Brain Behav Immun. 2017;62:256–64.

    Article  PubMed  Google Scholar 

  34. McKernan DP, Dennison U, Gaszner G, Cryan JF, Dinan TG. Enhanced peripheral toll-like receptor responses in psychosis: further evidence of a pro-inflammatory phenotype. Transl Psychiatry. 2011;1:e36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Texereau J, Chiche JD, Taylor W, Choukroun G, Comba B, Mira JP. The importance of Toll-like receptor 2 polymorphisms in severe infections. Clin Infect Dis. 2005;41(Suppl 7):S408–15.

  36. Lien Y-J, Tsuang H-C, Chiang A, Liu C-M, Hsieh MH, Hwang T-J, et al. The multidimensionality of schizotypy in nonpsychotic relatives of patients with schizophrenia and its applications in ordered subsets linkage analysis of schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:1–9.

    PubMed  Google Scholar 

  37. Park SJ, Lee JY, Kim SJ, Choi S-Y, Yune TY, Ryu JH. Toll-like receptor-2 deficiency induces schizophrenia-like behaviors in mice. Sci Rep. 2015;5:8502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kang WS, Park JK, Lee SM, Kim SK, Park HJ, Kim JW. Association between genetic polymorphisms of toll-like receptor 2 (TLR2) and schizophrenia in the Korean population. Gene. 2013;526:182–6.

    Article  CAS  PubMed  Google Scholar 

  39. Oliveira J, Hamdani N, Busson M, Etain B, Bennabi M, Amokrane K, et al. Association between toll-like receptor 2 gene diversity and early-onset bipolar disorder. J Affect Disord. 2014;165:135–41.

    Article  CAS  PubMed  Google Scholar 

  40. Noguchi E, Nishimura F, Fukai H, Kim J, Ichikawa K, Shibasaki M, et al. An association study of asthma and total serum immunoglobin E levels for toll-like receptor polymorphisms in a Japanese population. Clin Exp Allergy. 2004;34:177–83.

    Article  CAS  PubMed  Google Scholar 

  41. Junpee A, Tencomnao T, Sanprasert V, Nuchprayoon S. Association between toll-like receptor 2 (TLR2) polymorphisms and asymptomatic bancroftian filariasis. Parasitol Res. 2010;107:807–16.

    Article  PubMed  Google Scholar 

  42. Kormann MSD, Ferstl R, Depner M, Klopp N, Spiller S, Illig T, et al. Rare TLR2 mutations reduce TLR2 receptor function and can increase atopy risk. Allergy. 2009;64:636–42.

    Article  CAS  PubMed  Google Scholar 

  43. Pattabiraman G, Panchal R, Medvedev AE. The R753Q polymorphism in toll-like receptor 2 (TLR2) attenuates innate immune responses to mycobacteria and impairs MyD88 adapter recruitment to TLR2. J Biol Chem. 2017;292:10685–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ioana M, Ferwerd B, Plantinga TS, Stappers M, Oosting M, McCall M, et al. Different patterns of toll-like receptor 2 polymorphisms in populations of various ethnic and geographic origins. Infect Immun. 2012;80:1917–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jotic A, Jesic S, Zivkovic M, Tomanovic N, Kuveljic J, Stankovic A. Polymorphisms in Toll-like receptors 2 and 4 genes and their expression in chronic suppurative otitis media. Auris Nasus Larynx. 2015;42(6):431–7.

  46. Schröder NWJ, Hermann C, Hamann L, Göbel UB, Hartung T, Schumann RR. High frequency of polymorphism Arg753Gln of the toll-like receptor-2 gene detected by a novel allele-specific PCR. J Mol Med. 2003;81:368–72.

    Article  PubMed  Google Scholar 

  47. Proença MA, De Oliveira JG, Cadamuro ACT, Succi M, Netinho JG, Goloni-Bertolo EM, et al. TLR2 and TLR4 polymorphisms influence mRNA and protein expression in colorectal cancer. World J Gastroenterol. 2015;21:7730–41.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Greene JA, Sam-Agudu N, John CC, Opoka RO, Zimmerman PA, Kazura JW. Toll-like receptor polymorphisms and cerebral malaria: TLR2 Δ22 polymorphism is associated with protection from cerebral malaria in a case control study. Malar J. 2012;11:1–19.

    Article  Google Scholar 

  49. Brown AS, Hooton J, Schaefer CA, Zhang H, Petkova E, Babulas V, et al. Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am J Psychiatry. 2004;161:889–95.

    Article  PubMed  Google Scholar 

  50. Ellman LM, Deicken RF, Vinogradov S, Kremen WS, Poole JH, Kern DM, et al. Structural brain alterations in schizophrenia following fetal exposure to the inflammatory cytokine interleukin-8. Schizophr Res. 2010;121:46–54.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yamamoto T, Tsutsumi N, Tochio H, Ohnishi H, Kubota K, Kato Z, et al. Functional assessment of the mutational effects of human IRAK4 and MyD88 genes. Mol Immunol. 2014;58:66–76.

    Article  CAS  PubMed  Google Scholar 

  52. Larsson MK, Schwieler L, Goiny M, Erhardt S, Engberg G. Chronic antipsychotic treatment in the rat – effects on brain interleukin-8 and kynurenic acid. Int J Tryptophan Res. 2015;8:49–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nischalke HD, Coenen M, Berger C, Aldenhoff K, Müller T, Berg T, et al. The toll-like receptor 2 (TLR2) -196 to -174 del/ins polymorphism affects viral loads and susceptibility to hepatocellular carcinoma in chronic hepatitis. C Int J Cancer. 2012;130:1470–5.

    Article  CAS  Google Scholar 

  54. Ben Afia A, Aflouk Y, Saoud H, Zaafrane F, Gaha L, BelHadj Jrad B. Inteurleukin-8 gene variations and the susceptibility to schizophrenia. Psychiatry Res. 2020;293:113421.

    Article  PubMed  Google Scholar 

  55. Kang T-J, Chae G-T. Detection of toll-like receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol Med Microbiol. 2001;31:53–8.

    Article  CAS  PubMed  Google Scholar 

  56. Lorenz E, Mira JP, Cornish KL, Arbour NC, Schwartz DA. A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Tuomanen EI, editor Infect Immun. 2000;68:6398–401.

    Article  CAS  Google Scholar 

  57. Xiong Y, Song C, Snyder GA, Sundberg EJ, Medvedev AE. R753Q polymorphism inhibits toll-like receptor (TLR) 2 tyrosine phosphorylation, dimerization with TLR6, and recruitment of myeloid differentiation primary response protein 88. J Biol Chem. 2012;287:38327–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bochud P-Y, Hawn TR, Aderem A. Cutting edge: a toll-like receptor 2 polymorphism that is associated with lepromatous leprosy is unable to mediate mycobacterial signaling. J Immunol. 2003;170:3451–4.

    Article  CAS  PubMed  Google Scholar 

  59. Kang T-J, Chung EY, Byoung CK, You EY, Chae GT. Differential production of interleukin-10 and interleukin-12 in mononuclear cells from leprosy patients with a toll-like receptor 2 mutation. Immunology. 2004;112:674–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brown RA, Gralewski JH, Eid AJ, Knoll BM, Finberg RW, Razonable RR. R753Q Single-nucleotide polymorphism impairs toll-like receptor 2 recognition of hepatitis c virus core and nonstructural 3 proteins. Transplantation. 2010;89:811–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mrabet-Dahbi S, Dalpke AH, Niebuhr M, Frey M, Draing C, Brand S, et al. The toll-like receptor 2 R753Q mutation modifies cytokine production and toll-like receptor expression in atopic dermatitis. J Allergy Clin Immunol. 2008;121:1013–9.

    Article  CAS  PubMed  Google Scholar 

  62. Ben-Ali M, Corre B, Manry J, Barreiro LB, Quach H, Boniotto M, et al. Functional characterization of naturally occurring genetic variants in the human TLR1-2-6 gene family. Hum Mutat. 2011;32:643–52.

    Article  CAS  PubMed  Google Scholar 

  63. Schröder NWJ, Diterich I, Zinke A, Eckert J, Draing C, Baehr VV, et al. Heterozygous Arg753Gln polymorphism of human TLR-2 impairs immune activation by Borrelia burgdorferi and protects from late stage lyme disease. J Immunol. 2005;175:2534–40.

    Article  PubMed  Google Scholar 

  64. Thabet S, Ben Nejma M, Zaafrane F, Gaha L, Ben Salem K, Romdhane A, et al. Association of the Met-196-Arg variation of human tumor necrosis factor receptor 2 (TNFR2) with paranoid schizophrenia. J Mol Neurosci. 2011;43:358–63.

    Article  CAS  PubMed  Google Scholar 

  65. Jemli A, Inoubli O, Trifa F, Mechri A, Zaafrane F, Gaha L, et al. IFNGR2 genetic polymorphism associated with sex-specific paranoid schizophrenia risk. Nord J Psychiatry. 2017;71:42–7.

    Article  PubMed  Google Scholar 

  66. Inoubli O, Jemli A, Ben Fredj S, Mechri A, Gaha L, BelHadj Jrad B. Haplotypes of TNFα/β genes associated with sex-specific paranoid schizophrenic risk in tunisian population. Dis Markers. 2018;2018:3502564.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Orhan F, Bhat M, Sandberg K, Ståhl S, Piehl F, Svensson C, et al. Tryptophan metabolism along the kynurenine pathway downstream of toll-like receptor stimulation in peripheral monocytes. Scand J Immunol. 2016;84:262–71.

    Article  CAS  PubMed  Google Scholar 

  68. Capuron L, Schroecksnadel S, Féart C, Aubert A, Higueret D, Barberger-Gateau P, et al. Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms. Biol Psychiatry. 2011;70:175–82.

    Article  CAS  PubMed  Google Scholar 

  69. Miller CL, Llenos IC, Dulay JR, Weis S. Upregulation of the initiating step of the kynurenine pathway in postmortem anterior cingulate cortex from individuals with schizophrenia and bipolar disorder. Brain Res. 2006;1073–1074:25–37.

    Article  PubMed  Google Scholar 

  70. Erhardt S, Schwieler L, Imbeault S, Engberg G. The kynurenine pathway in schizophrenia and bipolar disorder. Neuropharmacology. 2017;112:297–306.

    Article  CAS  PubMed  Google Scholar 

  71. Muller N, Myint A-M, Schwarz J, Kynurenine M. Pathway in schizophrenia: pathophysiological and therapeutic aspects. Curr Pharm Des. 2011;17:130–6.

    Article  PubMed  Google Scholar 

  72. Bulzacka E, Boyer L, Schürhoff F, Godin O, Berna F, Brunel L, et al. Chronic peripheral inflammation is associated with cognitive impairment in schizophrenia: results from the multicentric FACE-SZ dataset. Schizophr Bull. 2016;42:1290–302.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fernandes BS, Steiner J, Bernstein H-G, Dodd S, Pasco JA, Dean OM, et al. C-reactive protein is increased in schizophrenia but is not altered by antipsychotics: meta-analysis and implications. Mol Psychiatry. 2016;21:554–64.

    Article  CAS  PubMed  Google Scholar 

  74. Hussein YM, Awad HA, Shalaby SM, Ali A-SA, Alzahrani SS. Toll-like receptor 2 and toll-like receptor 4 polymorphisms and susceptibility to asthma and allergic rhinitis: a case–control analysis. Cell Immunol. 2012;274:34–8.

    Article  CAS  PubMed  Google Scholar 

  75. Yu J-T, Sun Y-P, Ou J-R, Cui W-Z, Zhang W, Tan L. No association of toll-like receptor 2 polymorphisms with Alzheimer’s disease in Han Chinese. Neurobiol Aging. 2011;32:1924.e1-1924.e3.

    Article  Google Scholar 

  76. Ryu YJ, Kim EJ, Koh WJ, Kim H, Kwon OJ, Chang JH. Toll-like receptor 2 polymorphisms and nontuberculous mycobacterial lung diseases. Clin Vaccine Immunol. 2006;13:818–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Folwaczny M, Glas J, Török HP, Limbersky O, Folwaczny C. Toll-like receptor (TLR) 2 and 4 mutations in periodontal disease. Clin Exp Immunol. 2004;135:330–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Biswas D, Gupta SK, Sindhwani G, Patras A. TLR2 polymorphisms, Arg753Gln and Arg677Trp, are not associated with increased burden of tuberculosis in Indian patients. BMC Res Notes. 2009;2:162.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Saleh MA, Ramadan MM, Arram EO. Toll-like receptor-2 Arg753Gln and Arg677Trp polymorphisms and susceptibility to pulmonary and peritoneal tuberculosis. APMIS. 2017;125(6):558–64.

  80. Moumad K, Lascorz J, Bevier M, Khyatti M, Ennaji MM, Benider A, et al. Genetic polymorphisms in host innate immune sensor genes and the risk of nasopharyngeal carcinoma in North Africa. G3 Genes Genomes Genet. 2013;3:971–7.

    Google Scholar 

  81. Cédola M, Chiani Y, Pretre G, Alberdi L, Vanasco B, Gómez RM. Association of toll-like receptor 2 Arg753Gln and toll-like receptor 1 Ile602Ser single-nucleotide polymorphisms with leptospirosis in an argentine population. Acta Trop. 2015;146:73–80.

    Article  PubMed  Google Scholar 

  82. Matas-Cobos AM, Redondo-Cerezo E, Alegría-Motte C, Martínez-Chamorro A, Saenz-López P, Jiménez P, et al. The role of toll-like receptor polymorphisms in acute pancreatitis occurrence and severity. Pancreas. 2015;44:429–33.

    Article  CAS  PubMed  Google Scholar 

  83. Ben-Ali M, Barbouche MR, Bousnina S, Chabbou A, Dellagi K. Toll-like receptor 2 Arg677Trp polymorphism is associated with susceptibility to tuberculosis in Tunisian patients. Clin Diagn Lab Immunol. 2004;11:625–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Abida O, Bahloul E, Elloumi N, Toumi A, Tahri S, Ben Jmaa M, et al. Toll-like-receptor gene polymorphisms in tunisian endemic Pemphigus Foliaceus. Kanazawa N editor Biomed Res Int. 2020;2020:6541761.

    CAS  Google Scholar 

  85. Dhifallah Ben I, Lachheb J, Houman H, Hamzaoui K. Toll-like-receptor gene polymorphisms in a Tunisian population with Behçet’s disease. Clin Exp Rheumatol. 2009;27:S58-62.

    Google Scholar 

  86. Ajili F, Boubaker S, Derouiche A, Ali Ben M, Mustapha Ben I, Cherif M, et al. Relationship between toll-like receptor 2 nonsynonymous single nucleotide polymorphisms and the effectiveness of Bacille Calmette-Guérin immunotherapy in preventing recurrence of superficial bladder cancer: a prospective study. Curr Ther Res Clin Exp. 2010;71:398–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lachheb J, Dhifallah IB, Chelbi H, Hamzaoui K, Hamzaoui A. Toll-like receptors and CD14 genes polymorphisms and susceptibility to asthma in Tunisian children. Tissue Antigens. 2008;71:417–25.

    Article  CAS  PubMed  Google Scholar 

  88. Rosentul DC, Delsing CE, Jaeger M, Plantinga TS, Oosting M, Costantini I, et al. Gene polymorphisms in pattern recognition receptors and susceptibility to idiopathic recurrent vulvovaginal candidiasis. Front Microbiol. 2014;5:483.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are very grateful to the staff of Psychiatry and Hematology Department of CHU Fattouma Bourguiba of Monastir for providing us with samples and clinical information. We would like to thank Dr. YATOUJI Sonia (Faculty of Medicine, University of Monastir, Monastir, Tunisia) for providing us with AciI enzyme.

Funding

This work was supported by the Tunisian Ministry of Higher Education and Scientific Research, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Aflouk.

Ethics declarations

Conflict of interest

All authors declare no competing interests.

Ethics approval

This study was approved by the institutional ethical committee of the Higher Institute of Biotechnology of Monastir, Tunisia.

Consent to participate

The purpose and procedures of this study were explained to all patients and controls, and a written informed consent was obtained from each patient and donor or from a family member.

Consent for publication

The participants have consented to the submission of the study to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aflouk, Y., Inoubli, O., Saoud, H. et al. Association between TLR2 polymorphisms (− 196–174 Ins/Del, R677W, R753Q, and P631H) and schizophrenia in a Tunisian population. Immunol Res 69, 541–552 (2021). https://doi.org/10.1007/s12026-021-09238-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-021-09238-9

Keywords

Navigation