Skip to main content

Advertisement

Log in

Differential dysregulation of CREB and synaptic genes in transgenic Drosophila melanogaster expressing shaggy (GSK3), TauWT, or Amyloid-beta

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Tau, Amyloid-beta (Aβ42), and Glycogen synthase kinase 3 (GSK3) contribute to synaptic dysfunction observed in Alzheimer's disease (AD), the most common form of dementia. In the current study, the effect of pan-neuronal expression of TauWT, Aβ42, or shaggy (orthologue of GSK3) in Drosophila melanogaster was assessed on the locomotor function, ethanol sensitivity, synaptic genes and CREB expression. The effect of TauWT and Aβ42 on the expression of shaggy was also determined.

Methods and results

Gene expression analysis was performed using quantitative real-time RT-PCR method. While syt1, SNAP25 and CREB (upstream transcription factor of syt1 and SNAP25) were upregulated in flies expressing TauWT or Aβ42, a prominent decline was observed in those genes in shaggy expressing flies. Although all transgenic flies showed climbing disability and higher sensitivity to ethanol, abnormality in these features was significantly more prominent in transgenic flies expressing shaggy compared to TauWT or Aβ42. Despite a significant upregulation of shaggy transcription in TauWT expressing flies, Aβ42 transgenic flies witnessed no significant changes.

Conclusions

TauWT, Aβ42, and shaggy may affect synaptic plasticity through dysregulation of synaptic genes and CREB, independently. However shaggy has more detrimental effect on synaptic genes expression, locomotor ability and sensitivity to ethanol. It is important when it comes to drug discovery. It appears that CREB is a direct effector of changes in synaptic genes expression as they showed similar pattern of alteration and it is likely to be a part of compensatory mechanisms independent of the GSK3/CREB pathway in TauWT or Aβ42 expressing flies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mota SI, Ferreira IL, Rego AC (2014) Dysfunctional synapse in Alzheimer’s disease—a focus on NMDA receptors. Neuropharmacology 76:16–26. https://doi.org/10.1016/j.neuropharm.2013.08.013

    Article  CAS  Google Scholar 

  2. Lauretti E, Dincer O, Practicò D (2020) Glycogen synthase kinase-3 signaling in Alzheimer’s disease. Biochim Biophys Acta BBA 1867:664. https://doi.org/10.1016/j.bbamcr.2020.118664

    Article  CAS  Google Scholar 

  3. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298(5594):789–791. https://doi.org/10.1126/science.1074069

    Article  CAS  Google Scholar 

  4. Pooler AM, Noble W, Hanger DP (2014) A role for Tau at the synapse in Alzheimer’s disease pathogenesis. Neuropharmacology 76:1–8. https://doi.org/10.1016/j.neuropharm.2013.09.018

    Article  CAS  Google Scholar 

  5. Rajmohan R, Reddy PH (2017) Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. J Alzheimers Dis 57(4):975–999. https://doi.org/10.3233/JAD-160612

    Article  CAS  Google Scholar 

  6. Engel T, Gómez-Sintes R, Alves M et al (2018) Bi-directional genetic modulation of GSK-3β exacerbates hippocampal neuropathology in experimental status epilepticus. Cell Death Dis 9(10):1–14. https://doi.org/10.1038/s41419-018-0963-5

    Article  CAS  Google Scholar 

  7. Abtahi SL, Masoudi R, Haddadi M (2020) The distinctive role of Tau and amyloid beta in mitochondrial dysfunction through alteration in Mfn2 and Drp1 mRNA levels: a comparative study in Drosophila melanogaster. Gene 754:144854. https://doi.org/10.1016/j.gene.2020.144854

    Article  CAS  Google Scholar 

  8. Matarin M, Salih DA, Yasvoina M et al (2015) A genome-wide gene-expression analysis and database in transgenic mice during development of amyloid or tau pathology. Cell Rep 10(4):633–644. https://doi.org/10.1016/j.celrep.2014.12.041

    Article  CAS  Google Scholar 

  9. Sebollela A, Freitas-Correa L, Oliveira FF et al (2012) Amyloid-β oligomers induce differential gene expression in adult human brain slices. J Biol Chem 287(10):7436–7445. https://doi.org/10.1074/jbc.M111.298471

    Article  CAS  Google Scholar 

  10. Berchtold NC, Sabbagh MN, Beach TG, Kim RC, Cribbs DH, Cotman CW (2014) Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer’s disease. Neurobiol Aging 35(9):1961–1972. https://doi.org/10.1016/j.neurobiolaging.2014.03.031

    Article  CAS  Google Scholar 

  11. Bossers K, Wirz KT, Meerhoff GF et al (2010) Concerted changes in transcripts in the prefrontal cortex precede neuropathology in Alzheimer’s disease. Brain 133(12):3699–3723. https://doi.org/10.1093/brain/awq258

    Article  Google Scholar 

  12. Sze CI, Bi H, Kleinschmidt-DeMasters BK, Filley CM, Martin LJ (2000) Selective regional loss of exocytotic presynaptic vesicle proteins in Alzheimer’s disease brains. J Neurol Sci 175(2):81–90. https://doi.org/10.1016/s0022-510x(00)00285-9

    Article  CAS  Google Scholar 

  13. Saura CA, Parra-Damas A, Enriquez-Barreto L (2015) Gene expression parallels synaptic excitability and plasticity changes in Alzheimer’s disease. Front Cell Neurosci 9:318. https://doi.org/10.3389/fncel.2015.00318

    Article  CAS  Google Scholar 

  14. Shin OH (2014) Exocytosis and synaptic vesicle function. Compr Physiol 4:149–175. https://doi.org/10.1002/cphy.c130021

    Article  Google Scholar 

  15. Mundigl O, Verderio C, Krazewski K, De Camilli P, Matteoli M (1995) A radioimmunoassay to monitor synaptic activity in hippocampal neurons in vitro. Eur J Cell Biol 66(3):246–256

    CAS  Google Scholar 

  16. Liu YF, Chen HI, Wu CL et al (2009) Differential effects of treadmill running and wheel running on spatial or aversive learning and memory: roles of amygdalar brain-derived neurotrophic factor and synaptotagmin I. J Physiol 587(13):3221–3231. https://doi.org/10.1113/jphysiol.2009.173088

    Article  CAS  Google Scholar 

  17. Noor A, Zahid S (2017) A review of the role of synaptosomal-associated protein 25 (SNAP-25) in neurological disorders. Int J Neurosci 127(9):805–811. https://doi.org/10.1080/00207454.2016.1248240

    Article  CAS  Google Scholar 

  18. Barrenschee M, Böttner M, Harde J et al (2015) SNAP-25 is abundantly expressed in enteric neuronal networks and upregulated by the neurotrophic factor GDNF. Histochem Cell Biol 143(6):611–623. https://doi.org/10.1007/s00418-015-1310-x

    Article  CAS  Google Scholar 

  19. Kaldun JC, Sprecher SG (2019) Initiated by CREB: Resolving gene regulatory programs in learning and memory: switch in cofactors and transcription regulators between memory consolidation and maintenance network. BioEssays 41(8):1900045. https://doi.org/10.1002/bies.201900045

    Article  Google Scholar 

  20. Bartolotti N, Bennett DA, Lazarov O (2016) Reduced pCREB in Alzheimer’s disease prefrontal cortex is reflected in peripheral blood mononuclear cells. Mol Psychiatry 21(9):1158–1166. https://doi.org/10.1038/mp.2016.111

    Article  CAS  Google Scholar 

  21. Pugazhenthi S, Wang M, Pham S, Sze CI, Eckman CB (2011) Downregulation of CREB expression in Alzheimer’s brain and in Aβ-treated rat hippocampal neurons. Mol Neurodegener 6(1):1–16. https://doi.org/10.1186/1750-1326-6-60

    Article  CAS  Google Scholar 

  22. Sanabria-Castro A, Alvarado-Echeverría I, Monge-Bonilla C (2017) Molecular pathogenesis of Alzheimer’s disease: an update. Ann Neurosci 24(1):46–54. https://doi.org/10.1159/000464422

    Article  Google Scholar 

  23. Tan FH, Azzam G (2017) Drosophila melanogaster: deciphering Alzheimer’s disease. Malay J Med Sci 24(2):6. https://doi.org/10.21315/mjms2017.24.2.2

    Article  Google Scholar 

  24. Skaper SD (2012) Alzheimer’s disease and amyloid: culprit or coincidence. Int Rev Neurobiol 102:277–316. https://doi.org/10.1016/B978-0-12-386986-9.00011-9

    Article  CAS  Google Scholar 

  25. Goedert M, Spillantini MG (2000) Tau mutations in frontotemporal dementia FTDP-17 and their relevance for Alzheimer’s disease. Biochim Biophys Acta 1502(1):110–121. https://doi.org/10.1111/j.1749-6632.2000.tb06907.x

    Article  CAS  Google Scholar 

  26. Ali YO, Escala W, Ruan K, Zhai RG (2011) Assaying locomotor, learning, and memory deficits in Drosophila models of neurodegeneration. J Vis Exp 49:e2504

    Google Scholar 

  27. Maples T, Rothenfluh A (2011) A simple way to measure ethanol sensitivity in flies. J Vis Exp 48:e2541. https://doi.org/10.3791/2541

    Article  CAS  Google Scholar 

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  29. Albers MW, Gilmore GC, Kaye J et al (2015) At the interface of sensory and motor dysfunctions and Alzheimer’s disease. Alzheimers Dement 11(1):70–98. https://doi.org/10.1016/j.jalz.2014.04.514

    Article  Google Scholar 

  30. Moloney A, Sattelle DB, Lomas DA, Crowther DC (2010) Alzheimer’s disease: insights from Drosophila melanogaster models. Trends Biochem Sci 35(4):228–235. https://doi.org/10.1016/j.tibs.2009.11.004

    Article  CAS  Google Scholar 

  31. Guarnieri DJ, Heberlein U (2003) Drosophila melanogaster, a genetic model system for alcohol research. Int Rev Neurobiol 54:199–228. https://doi.org/10.1016/s0074-7742(03)54006-5

    Article  CAS  Google Scholar 

  32. Kapoor M, Chao MJ, Johnson EC et al (2021) Multi-omics integration analysis identifies novel genes for alcoholism with potential overlap with neurodegenerative diseases. Nat Commun 12(1):1–12. https://doi.org/10.1038/s41467-021-25392-y

    Article  CAS  Google Scholar 

  33. Ryvkin J, Bentzur A, Zer-Krispil S, Shohat-Ophir G (2018) Mechanisms underlying the risk to develop drug addiction, insights from studies in Drosophila melanogaster. Front Physiol 9:327. https://doi.org/10.3389/fphys.2018.00327

    Article  Google Scholar 

  34. Zhang X, Odom DT, Koo SH et al (2005) Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci USA 102(12):4459–4464. https://doi.org/10.1073/pnas.0501076102

    Article  CAS  Google Scholar 

  35. Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW (2004) Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci USA 101(7):2173–2178. https://doi.org/10.1073/pnas.0308512100

    Article  CAS  Google Scholar 

  36. Beurel E, Grieco SF, Jope R (2015) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 148:114–131. https://doi.org/10.1016/j.pharmthera.2014.11.016

    Article  CAS  Google Scholar 

  37. Kerr F, Augustin H, Piper MD et al (2011) Dietary restriction delays aging, but not neuronal dysfunction, in Drosophila models of Alzheimer’s disease. Neurobiol Aging 32(11):1977–1989. https://doi.org/10.1016/j.neurobiolaging.2009.10.015

    Article  CAS  Google Scholar 

  38. Park A, Ghezzi A, Wijesekera TP, Atkinson NS (2017) Genetics and genomics of alcohol responses in Drosophila. Neuropharmacology 122:22–35. https://doi.org/10.1016/j.neuropharm.2017.01.032

    Article  CAS  Google Scholar 

  39. Sofola O, Kerr F, Rogers I et al (2010) Inhibition of GSK-3 ameliorates Aβ pathology in an adult-onset Drosophila model of Alzheimer’s disease. PLoS Genet 6(9):e1001087. https://doi.org/10.1371/journal.pgen.1001087

    Article  CAS  Google Scholar 

  40. Bell KF, Bennett DA, Cuello AC (2007) Paradoxical upregulation of glutamatergic presynaptic boutons during mild cognitive impairment. J Neurosci 27(40):10810–10817. https://doi.org/10.1523/JNEUROSCI.3269-07.2007

    Article  CAS  Google Scholar 

  41. Hämäläinen A, Pihlajamäki M, Tanila H, Hänninen T, Niskanen E, Tervo S, Karjalainen PA, Vanninen RL, Soininen H (2007) Increased fMRI responses during encoding in mild cognitive impairment. Neurobiol Aging 28(12):1889–1903. https://doi.org/10.1016/j.neurobiolaging.2006.08.008

    Article  Google Scholar 

  42. Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30(4):379–387. https://doi.org/10.1038/aps.2009.24

    Article  CAS  Google Scholar 

  43. Rosa E, Fahnestock M (2015) CREB expression mediates amyloid β-induced basal BDNF downregulation. Neurobiol Aging 36(8):2406–2413. https://doi.org/10.1016/j.neurobiolaging.2015.04.014

    Article  CAS  Google Scholar 

  44. Chiang A, Priya R, Ramaswami M, Vijayraghavan K, Rodrigues V (2009) Neuronal activity and Wnt signaling act through Gsk3-β to regulate axonal integrity in mature Drosophila olfactory sensory neurons. Development 136(8):1273–1282. https://doi.org/10.1242/dev.031377

    Article  CAS  Google Scholar 

  45. Cuesto G, Jordán-Álvarez S, Enriquez-Barreto L et al (2015) GSK3β inhibition promotes synaptogenesis in Drosophila and mammalian neurons. PLoS ONE 10(3):e0118475. https://doi.org/10.1371/journal.pone.0118475

    Article  CAS  Google Scholar 

  46. Franciscovich AL, Mortimer AV, Freeman AA, Gu J, Sanyal S (2008) Overexpression screen in Drosophila identifies neuronal roles of GSK-3β/shaggy as a regulator of AP-1-dependent developmental plasticity. Genetics 180(4):2057–2071. https://doi.org/10.1534/genetics.107.085555

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a research grant from Shiraz University. The authors would like to thank Amir-Hussein Hadaegh (Central Laboratory of Shiraz University of Medical Sciences) for his assistance and helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

RM, conceived the presented idea, designed the experiments, contributed to the interpretation of the results and writing the manuscript. FA, performed the molecular and behavioral experiments and their statistical analysis and interpretation, wrote the manuscript and contributed to the conception of the idea. MH, guided and helped to design the experiments related to flies and provided the Drosophila stocks.

Corresponding author

Correspondence to Raheleh Masoudi.

Ethics declarations

Ethical approval

Drosophila experiments do not require ethics committee approval. However, all expreriments were conducted ethically and the number of animals used as kept to a minimum.

Consent to participate

Not applicable.

Consent to participate

Not applicable.

Competing interests

The authors of this article declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 32 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ataellahi, F., Masoudi, R. & Haddadi, M. Differential dysregulation of CREB and synaptic genes in transgenic Drosophila melanogaster expressing shaggy (GSK3), TauWT, or Amyloid-beta. Mol Biol Rep 50, 1101–1108 (2023). https://doi.org/10.1007/s11033-022-08059-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08059-9

Keywords

Navigation