Skip to main content

Advertisement

Log in

SNAP-25 is abundantly expressed in enteric neuronal networks and upregulated by the neurotrophic factor GDNF

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Control of intestinal motility requires an intact enteric neurotransmission. Synaptosomal-associated protein 25 (SNAP-25) is an essential component of the synaptic vesicle fusion machinery. The aim of the study was to investigate the localization and expression of SNAP-25 in the human intestine and cultured enteric neurons and to assess its regulation by the neurotrophic factor glial cell line-derived neurotrophic factor (GDNF). SNAP-25 expression and distribution were analyzed in GDNF-stimulated enteric nerve cell cultures, and synaptic vesicles were evaluated by scanning and transmission electron microscopy. Human colonic specimens were processed for site-specific SNAP-25 gene expression analysis and SNAP-25 immunohistochemistry including dual-labeling with the pan-neuronal marker PGP 9.5. Additionally, gene expression levels and distributional patterns of SNAP-25 were analyzed in colonic specimens of patients with diverticular disease (DD). GDNF-treated enteric nerve cell cultures showed abundant expression of SNAP-25 and exhibited granular staining corresponding to synaptic vesicles. SNAP-25 gene expression was detected in all colonic layers and isolated myenteric ganglia. SNAP-25 co-localized with PGP 9.5 in submucosal and myenteric ganglia and intramuscular nerve fibers. In patients with DD, both SNAP-25 mRNA expression and immunoreactive profiles were decreased compared to controls. GDNF-induced growth and differentiation of cultured enteric neurons is paralleled by increased expression of SNAP-25 and formation of synaptic vesicles reflecting enhanced synaptogenesis. The expression of SNAP-25 within the human enteric nervous system and its downregulation in DD suggest an essential role in enteric neurotransmission and render SNAP-25 as a marker for impaired synaptic plasticity in enteric neuropathies underlying intestinal motility disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

DD:

Diverticular disease

ENS:

Enteric nervous system

GABA:

γ-Aminobutyric acid

GDNF:

Glial cell line-derived neurotropic factor

GFRα1:

GDNF family receptor alpha 1

GI:

Gastrointestinal

HSCR:

Hirschsprung’s disease

IBS:

Irritable bowel syndrome

LMD:

Laser capture microdissection

qPCR:

Quantitative PCR

RET:

Rearranged during transfection

SNAP-25:

Synaptosome-associated protein 25 kDa

SNARE:

Soluble N-ethylmaleimide-sensitive factor attachment receptor

References

  • Aguado F, Majo G, Ruiz-Montasell B, Llorens J, Marsal J, Blasi J (1999) Syntaxin 1A and 1B display distinct distribution patterns in the rat peripheral nervous system. Neuroscience 88:437–446

    Article  CAS  PubMed  Google Scholar 

  • Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3:383–394

    Article  CAS  PubMed  Google Scholar 

  • Antonucci F, Corradini I, Morini R, Fossati G, Menna E, Pozzi D, Pacioni S, Verderio C, Bacci A, Matteoli M (2013) Reduced SNAP-25 alters short-term plasticity at developing glutamatergic synapses. EMBO Rep 14:645–651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beckett EA, Takeda Y, Yanase H, Sanders KM, Ward SM (2005) Synaptic specializations exist between enteric motor nerves and interstitial cells of Cajal in the murine stomach. J Comp Neurol 493:193–206

    Article  CAS  PubMed  Google Scholar 

  • Benarroch EE (2013) Synaptic vesicle exocytosis: molecular mechanisms and clinical implications. Neurology 80:1981–1988

    Article  PubMed  Google Scholar 

  • Bottner M, Bar F, Von Koschitzky H, Tafazzoli K, Roblick UJ, Bruch HP, Wedel T (2010) Laser microdissection as a new tool to investigate site-specific gene expression in enteric ganglia of the human intestine. Neurogastroenterol Motil 22(168–172):e152

    Google Scholar 

  • Böttner M, Bar F, Von Koschitzky H, Tafazzoli K, Roblick UJ, Bruch HP, Wedel T (2010) Laser microdissection as a new tool to investigate site-specific gene expression in enteric ganglia of the human intestine. Neurogastroenterol Motil 22(168–172):e152

    Google Scholar 

  • Böttner M, Zorenkov D, Hellwig I, Barrenschee M, Harde J, Fricke T, Deuschl G, Egberts JH, Becker T, Fritscher-Ravens A, Arlt A, Wedel T (2012) Expression pattern and localization of alpha-synuclein in the human enteric nervous system. Neurobiology Dis 48:474–480

    Article  Google Scholar 

  • Böttner M, Barrenschee M, Hellwig I, Harde J, Egberts JH, Becker T, Zorenkov D, Schäfer KH, Wedel T (2013a) The GDNF system is altered in diverticular disease—implications for pathogenesis. PLoS One 8:e66290

    Article  PubMed Central  PubMed  Google Scholar 

  • Böttner M, Harde J, Barrenschee M, Hellwig I, Vogel I, Ebsen M, Wedel T (2013b) GDNF induces synaptic vesicle markers in enteric neurons. Neurosci Res 77:128–136

    Article  PubMed  Google Scholar 

  • Bruns D, Jahn R (1995) Real-time measurement of transmitter release from single synaptic vesicles. Nature 377:62–65

    Article  CAS  PubMed  Google Scholar 

  • Burgoyne RD, Morgan A (2011) Chaperoning the SNAREs: a role in preventing neurodegeneration? Nat Cell Biol 13:8–9

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2008) Non-synaptic transmission at autonomic neuroeffector junctions. Neurochem Int 52:14–25

    Article  CAS  PubMed  Google Scholar 

  • Butler Tjaden NE, Trainor PA (2013) The developmental etiology and pathogenesis of Hirschsprung disease. Transl Res 162:1–15

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (1999) Interactions of presynaptic Ca2+ channels and snare proteins in neurotransmitter release. Ann NY Acad Sci 868:144–159

    Article  CAS  PubMed  Google Scholar 

  • Condliffe SB, Corradini I, Pozzi D, Verderio C, Matteoli M (2010) Endogenous SNAP-25 regulates native voltage-gated calcium channels in glutamatergic neurons. J Biol Chem 285:24968–24976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Corradini I, Verderio C, Sala M, Wilson MC, Matteoli M (2009) SNAP-25 in neuropsychiatric disorders. Ann NY Acad Sci 1152:93–99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Costa M, Brookes SJ (1994) The enteric nervous system. Am J Gastroenterol 89:S129–S137

    CAS  PubMed  Google Scholar 

  • Costa M, Brookes SJ, Hennig GW (2000) Anatomy and physiology of the enteric nervous system. Gut 47(Suppl 4):iv15–iv19 discussion iv26

    PubMed Central  PubMed  Google Scholar 

  • Di Nardo G, Blandizzi C, Volta U, Colucci R, Stanghellini V, Barbara G, Del Tacca M, Tonini M, Corinaldesi R, De Giorgio R (2008) Review article: molecular, pathological and therapeutic features of human enteric neuropathies. Aliment Pharmacol Ther 28:25–42

    Article  PubMed  Google Scholar 

  • Furness JB (2006) The enteric nervous system. Blackwell, Oxford

    Google Scholar 

  • Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9:286–294

    Article  CAS  PubMed  Google Scholar 

  • Giaroni C, Zanetti E, Chiaravalli AM, Albarello L, Dominioni L, Capella C, Lecchini S, Frigo G (2003) Evidence for a glutamatergic modulation of the cholinergic function in the human enteric nervous system via NMDA receptors. Eur J Pharmacol 476:63–69

    Article  CAS  PubMed  Google Scholar 

  • Guerini FR, Bolognesi E, Chiappedi M, Manca S, Ghezzo A, Agliardi C, Sotgiu S, Usai S, Matteoli M, Clerici M (2011) SNAP-25 single nucleotide polymorphisms are associated with hyperactivity in autism spectrum disorders. Pharmacol Res 64:283–288

    Article  CAS  PubMed  Google Scholar 

  • Hanson PI, Heuser JE, Jahn R (1997) Neurotransmitter release—four years of SNARE complexes. Curr Opin Neurobiol 7:310–315

    Article  CAS  PubMed  Google Scholar 

  • Hyland NP, Cryan JF (2010) A Gut Feeling about GABA: focus on GABA(B) Receptors. Front Pharmacol 1:124

    Article  PubMed Central  PubMed  Google Scholar 

  • Jahn R, Scheller RH (2006) SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643

    Article  CAS  PubMed  Google Scholar 

  • Kirchgessner AL (2001) Glutamate in the enteric nervous system. Curr Opin Pharmacol 1:591–596

    Article  CAS  PubMed  Google Scholar 

  • Knowles CH, De Giorgio R, Kapur RP, Bruder E, Farrugia G, Geboes K, Gershon MD, Hutson J, Lindberg G, Martin JE, Meier-Ruge WA, Milla PJ, Smith VV, Vandervinden JM, Veress B, Wedel T (2009) Gastrointestinal neuromuscular pathology: guidelines for histological techniques and reporting on behalf of the Gastro 2009 International Working Group. Acta Neuropathol 118:271–301

    Article  PubMed  Google Scholar 

  • Knowles CH, De Giorgio R, Kapur RP, Bruder E, Farrugia G, Geboes K, Lindberg G, Martin JE, Meier-Ruge WA, Milla PJ, Smith VV, Vandervinden JM, Veress B, Wedel T (2010) The London Classification of gastrointestinal neuromuscular pathology: report on behalf of the Gastro 2009 International Working Group. Gut 59:882–887

    Article  PubMed  Google Scholar 

  • Krammer HJ, Karahan ST, Rumpel E, Klinger M, Kuhnel W (1993) Immunohistochemical visualization of the enteric nervous system using antibodies against protein gene product (PGP) 9.5. Ann Anat 175:321–325

    Article  CAS  PubMed  Google Scholar 

  • Ledda F, Paratcha G, Sandoval-Guzman T, Ibanez CF (2007) GDNF and GFRalpha1 promote formation of neuronal synapses by ligand-induced cell adhesion. Nat Neurosci 10:293–300

    Article  CAS  PubMed  Google Scholar 

  • Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    Article  CAS  PubMed  Google Scholar 

  • Lo DC (1995) Neurotrophic factors and synaptic plasticity. Neuron 15:979–981

    Article  CAS  PubMed  Google Scholar 

  • Lourenssen S, Houpt ER, Chadee K, Blennerhassett MG (2010) Entamoeba histolytica infection and secreted proteins proteolytically damage enteric neurons. Infect Immun 78:5332–5340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McAllister AK, Katz LC, Lo DC (1999) Neurotrophins and synaptic plasticity. Annu Rev Neurosci 22:295–318

    Article  CAS  PubMed  Google Scholar 

  • Michaelevski I, Chikvashvili D, Tsuk S, Singer-Lahat D, Kang Y, Linial M, Gaisano HY, Fili O, Lotan I (2003) Direct interaction of target SNAREs with the Kv2.1 channel. Modal regulation of channel activation and inactivation gating. J Biol Chem 278:34320–34330

    Article  CAS  PubMed  Google Scholar 

  • Nirasawa Y, Ito Y, Seki N, Akagawa K (1997) HPC-1/syntaxin-1A activity in the enteric nervous system of developing rat gastrointestinal tract. J Smooth Muscle Res 33:61–66

    Article  CAS  PubMed  Google Scholar 

  • Nirasawa Y, Ito Y, Fujiwara T, Seki N, Tanaka H, Akagawa K (2001) Altered immunoreactivity of HPC-1/syntaxin 1A in proliferated nerve fibers in the human aganglionic colon of Hirschsprung’s disease. J Mol Neurosci 16:13–19

    Article  CAS  PubMed  Google Scholar 

  • Poli E, Lazzaretti M, Grandi D, Pozzoli C, Coruzzi G (2001) Morphological and functional alterations of the myenteric plexus in rats with TNBS-induced colitis. Neurochem Res 26:1085–1093

    Article  CAS  PubMed  Google Scholar 

  • R-Core-Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rizo J, Südhof TC (2002) Snares and Munc18 in synaptic vesicle fusion. Nat Rev Neurosci 3:641–653

    Article  CAS  PubMed  Google Scholar 

  • Rizo J, Südhof TC (2012) The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices—guilty as charged? Annu Rev Cell Dev Biol 28:279–308

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues DM, Li AY, Nair DG, Blennerhassett MG (2011) Glial cell line-derived neurotrophic factor is a key neurotrophin in the postnatal enteric nervous system. Neurogastroenterol Motil 23:e44–e56

    Article  CAS  PubMed  Google Scholar 

  • Schäfer KH, Mestres P (1999) The GDNF-induced neurite outgrowth and neuronal survival in dissociated myenteric plexus cultures of the rat small intestine decreases postnatally. Exp Brain Res 125:447–452

    Article  PubMed  Google Scholar 

  • Schäfer KH, Saffrey MJ, Burnstock G, Mestres-Ventura P (1997) A new method for the isolation of myenteric plexus from the newborn rat gastrointestinal tract. Brain Res Brain Res Protoc 1:109–113

    Article  PubMed  Google Scholar 

  • Sharma M, Burre J, Bronk P, Zhang Y, Xu W, Südhof TC (2012) CSPalpha knockout causes neurodegeneration by impairing SNAP-25 function. EMBO J 31:829–841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharrad DF, Gai WP, Brookes SJ (2013) Selective coexpression of synaptic proteins, alpha-synuclein, cysteine string protein-alpha, synaptophysin, synaptotagmin-1, and synaptobrevin-2 in vesicular acetylcholine transporter-immunoreactive axons in the guinea pig ileum. J Comp Neurol 521:2523–2537

    Article  CAS  PubMed  Google Scholar 

  • Snoek SA, Verstege MI, Boeckxstaens GE, van den Wijngaard RM, de Jonge WJ (2010) The enteric nervous system as a regulator of intestinal epithelial barrier function in health and disease. Expert Rev Gastroenterol Hepatol 4:637–651

    Article  PubMed  Google Scholar 

  • Südhof TC (1995) The synaptic vesicle cycle: a cascade of protein–protein interactions. Nature 375:645–653

    Article  PubMed  Google Scholar 

  • Südhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    Article  PubMed  Google Scholar 

  • Südhof TC, Rizo J (2011) Synaptic vesicle exocytosis. Cold Spring Harb Perspect Biol 3:a005637

    Article  PubMed Central  PubMed  Google Scholar 

  • Tsuk S, Lvov A, Michaelevski I, Chikvashvili D, Lotan I (2008) Formation of the full SNARE complex eliminates interactions of its individual protein components with the Kv2.1 channel. Biochemistry 47:8342–8349

    Article  CAS  PubMed  Google Scholar 

  • Verderio C, Pozzi D, Pravettoni E, Inverardi F, Schenk U, Coco S, Proux-Gillardeaux V, Galli T, Rossetto O, Frassoni C, Matteoli M (2004) SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization. Neuron 41:599–610

    Article  CAS  PubMed  Google Scholar 

  • von Boyen GB, Reinshagen M, Steinkamp M, Adler G, Kirsch J (2002) Enteric nervous plasticity and development: dependence on neurotrophic factors. J Gastroenterol 37:583–588

    Article  Google Scholar 

  • Wang J, Chen G, Lu B, Wu CP (2003) GDNF acutely potentiates Ca2+ channels and excitatory synaptic transmission in midbrain dopaminergic neurons. Neurosignals 12:78–88

    Article  CAS  PubMed  Google Scholar 

  • Wedel T, Böttner M (2014) Anatomy and pathogenesis of diverticular disease. Chirurg 85:281–288

    Article  CAS  PubMed  Google Scholar 

  • Wedel T, Büsing V, Heinrichs G, Nohroudi K, Bruch HP, Roblick U, Böttner M (2010) Diverticular disease is associated with an enteric neuropathy as revealed by morphometric analysis. Neurogastroenterol Motil 22:407–414

    Article  CAS  PubMed  Google Scholar 

  • Zamponi GW (2003) Regulation of presynaptic calcium channels by synaptic proteins. J Pharmacol Sci 92:79–83

    Article  CAS  PubMed  Google Scholar 

  • Zeng F, Watson RP, Nash MS (2009) Glial cell-derived neurotrophic factor enhances synaptic communication and 5-hydroxytryptamine 3a receptor expression in enteric neurons. Gastroenterology 138:1491–1501

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Karin Stengel, Inka Geurink, Miriam Lemmer, Frank Lichte, Bettina Facompré and Clemens Franke (Institute of Anatomy, Christian-Albrechts-University of Kiel) for their excellent technical assistance. This work was supported by research grants from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG WE 2366/4-3) and the Faculty of Medicine, University of Kiel (F347022). The funding sources have no role in study design, management of data and writing of the paper.

Conflict of interest

The authors disclose no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Barrenschee.

Additional information

M. Barrenschee and M. Böttner have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrenschee, M., Böttner, M., Harde, J. et al. SNAP-25 is abundantly expressed in enteric neuronal networks and upregulated by the neurotrophic factor GDNF. Histochem Cell Biol 143, 611–623 (2015). https://doi.org/10.1007/s00418-015-1310-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-015-1310-x

Keywords

Navigation