Skip to main content
Log in

Potential in vitro therapeutic effects of targeting SP/NK1R system in cervical cancer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Cervical cancer, an aggressive gynecological cancer, seriously threatens women’s health worldwide. It is recently reported that neuropeptide substance P (SP) regulates many tumor-associated processes through neurokinin-1 receptor (NK1R). Therefore, we used cervical cancer cell line (HeLa) to investigate the functional relevance of the SP/NK1R system in cervical cancer pathogenesis.

Methods

Cellular proliferation and cytotoxicity were analyzed by colorimetric MTT assay. Quantitative real-time PCR (qRT-PCR) was used to measure mRNA expression levels of desired genes. Cell cycle distribution and apoptosis were evaluated by flow cytometry. A wound-healing assay was employed to assess migration ability.

Results

We found that the truncated isoform of NK1R(NK1R-Tr) is the dominantly expressed form of the receptor in Hela cells. We also indicated that that SP increased HeLa cell proliferation while treatment with NK1R antagonist, aprepitant, inhibited HeLa cell viability in a dose and time-dependent manner. SP also alters the levels of cell cycle regulators (up-regulation of cyclin B1 along with downregulation of p21) and apoptosis-related genes (up-regulation of Bcl-2 along with downregulation of Bax) while aprepitant reversed these effects. Aprepitant also induced arrest within the G2 phase of the cell cycle and subsequent apoptosis. Furthermore, SP promoted the migrative phenotype of HeLa cells and increased MMP-2 and MMP-9 expression while aprepitant exposure significantly reversed these effects.

Conclusion

Collectively, our results indicate the importance of the SP / NK1R system in promoting both proliferative and migrative phenotypes of cervical cancer cells and suggest that aprepitant may be developed as a novel treatment for combating cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data are available upon request.

References

  1. Ali F, Kuelker R, Wassie B (2012) Understanding cervical cancer in the context of developing countries. Ann Trop Med Public Health 5:3

    Article  Google Scholar 

  2. Vu M, Yu J, Awolude OA, Chuang L (2018) Cervical cancer worldwide. Curr Probl Cancer 42:457–465. https://doi.org/10.1016/j.currproblcancer.2018.06.003

    Article  PubMed  Google Scholar 

  3. Arbyn M, Weiderpass E, Bruni L, de Sanjose S, Saraiya M, Ferlay J, Bray F (2020) Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Health 8:e191–e203. https://doi.org/10.1016/S2214-109X(19)30482-6

    Article  PubMed  Google Scholar 

  4. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  5. Eskander RN, Tewari KS (2014) Chemotherapy in the treatment of metastatic, persistent, and recurrent cervical cancer. Curr Opin Obstet Gynecol 26:314–321. https://doi.org/10.1097/GCO.0000000000000042

    Article  PubMed  Google Scholar 

  6. Feng H, Hu Y, Jin P, Meng X, Chen Y, Zhang H (2017) Intensity-modulated radiotherapy combined with iodine-125 seed implantation in non-central recurrence of cervical cancer: A case report and literature review. Oncol Lett 14:4085–4091. https://doi.org/10.3892/ol.2017.6680

    Article  PubMed  PubMed Central  Google Scholar 

  7. Javid H, Mohammadi F, Zahiri E, Hashemy SI (2019) The emerging role of substance P/neurokinin-1 receptor signaling pathways in growth and development of tumor cells. J Physiol Biochem 75:415–421. https://doi.org/10.1007/s13105-019-00697-1

    Article  CAS  PubMed  Google Scholar 

  8. Chang MM, Leeman SE, Niall HD (1971) Amino-acid sequence of substance P. Nat New Biol 232:86–87. https://doi.org/10.1038/newbio232086a0

    Article  CAS  PubMed  Google Scholar 

  9. Garcia-Recio S, Gascon P (2015) Biological and Pharmacological Aspects of the NK1-Receptor. Biomed Res Int 2015:495704. https://doi.org/10.1155/2015/495704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW (2014) Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 94:265–301. https://doi.org/10.1152/physrev.00031.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Muñoz M, Coveñas R (2014) Involvement of substance P and the NK-1 receptor in pancreatic cancer. World J Gastroenterol 20:2321–2334. https://doi.org/10.3748/wjg.v20.i9.2321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Skrabanek P, Powell D (1983) Substance P in obstetrics and gynecology. Obstet Gynecol 61:641–646

    CAS  PubMed  Google Scholar 

  13. Sickinger M, Roth J, Failing K, Wehrend A (2018) Serum neuropeptide concentrations in cows with intrapartum uterine torsion. Anim Reprod Sci 196:193–196. https://doi.org/10.1016/j.anireprosci.2018.08.007

    Article  CAS  PubMed  Google Scholar 

  14. Di Tommaso S, Cavallotti C, Malvasi A, Vergara D, Rizzello A, De Nuccio F, Tinelli A (2017) A qualitative and quantitative study of the innervation of the human non pregnant uterus. Curr Protein Pept Sci 18:140–148. https://doi.org/10.2174/1389203717666160330105341

    Article  CAS  PubMed  Google Scholar 

  15. Collins JJ, Usip S, McCarson KE, Papka RE (2002) Sensory nerves and neuropeptides in uterine cervical ripening. Peptides 23:167–183. https://doi.org/10.1016/s0196-9781(01)00593-9

    Article  CAS  PubMed  Google Scholar 

  16. Mowa CN, Papka RE (2004) The role of sensory neurons in cervical ripening: effects of estrogen and neuropeptides. J Histochem Cytochem 52:1249–1258. https://doi.org/10.1177/002215540405201001

    Article  CAS  PubMed  Google Scholar 

  17. Bukowski R (2014) Expression of NK1 receptor at the protein and mRNA level in the porcine female reproductive system. Pol J Vet Sci 17:469–477. https://doi.org/10.2478/pjvs-2014-0068

    Article  CAS  PubMed  Google Scholar 

  18. Fried G, Meister B, Radestad A (1990) Peptide-containing nerves in the human pregnant uterine cervix: an immunohistochemical study exploring the effect of RU 486 (mifepristone). Hum Reprod 5:870–876. https://doi.org/10.1093/oxfordjournals.humrep.a137200

    Article  CAS  PubMed  Google Scholar 

  19. Ottesen B, Gram BR, Fahrenkrug J (1983) Neuropeptides in the female genital tract: effect on vascular and non-vascular smooth muscle. Peptides 4:387–392. https://doi.org/10.1016/0196-9781(83)90151-1

    Article  CAS  PubMed  Google Scholar 

  20. Gharaee N, Pourali L, Jafarian AH, Hashemy SI (2018) Evaluation of serum level of substance P and tissue distribution of NK-1 receptor in endometrial cancer. Mol Biol Rep 45:2257–2262. https://doi.org/10.1007/s11033-018-4387-1

    Article  CAS  PubMed  Google Scholar 

  21. Davoodian M, Boroumand N, Mehrabi Bahar M, Jafarian AH, Asadi M, Hashemy SI (2019) Evaluation of serum level of substance P and tissue distribution of NK-1 receptor in breast cancer. Mol Biol Rep 46:1285–1293. https://doi.org/10.1007/s11033-019-04599-9

    Article  CAS  PubMed  Google Scholar 

  22. Ebrahimi S, Javid H, Alaei A, Hashemy SI (2020) New insight into the role of substance P/neurokinin-1 receptor system in breast cancer progression and its crosstalk with microRNAs. Clin Genet 98:322–330. https://doi.org/10.1111/cge.13750

    Article  CAS  PubMed  Google Scholar 

  23. Munoz M, Covenas R (2020) Neurokinin receptor antagonism: a patent review (2014-present). Expert Opin Ther Pat 30:527–539. https://doi.org/10.1080/13543776.2020.1769599

    Article  CAS  PubMed  Google Scholar 

  24. Ghahremani F, Sabbaghzadeh R, Ebrahimi S, Javid H, Ghahremani J, Hashemy SI (2021) Pathogenic role of the SP/NK1R system in GBM cells through inhibiting the thioredoxin system. Iran J Basic Med Sci 24:499

    PubMed  PubMed Central  Google Scholar 

  25. Lai JP, Lai S, Tuluc F, Tansky MF, Kilpatrick LE, Leeman SE, Douglas SD (2008) Differences in the length of the carboxyl terminus mediate functional properties of neurokinin-1 receptor. Proc Natl Acad Sci U S A 105:12605–12610. https://doi.org/10.1073/pnas.0806632105

    Article  PubMed  PubMed Central  Google Scholar 

  26. Berger M, Neth O, Ilmer M, Garnier A, Salinas-Martín MV, de Agustín Asencio JC, von Schweinitz D, Kappler R, Muñoz M (2014) Hepatoblastoma cells express truncated neurokinin-1 receptor and can be growth inhibited by aprepitant in vitro and in vivo. J Hepatol 60:985–994

    Article  CAS  PubMed  Google Scholar 

  27. Zhou Y, Zhao L, Xiong T, Chen X, Zhang Y, Yu M, Yang J, Yao Z (2013) Roles of full-length and truncated neurokinin-1 receptors on tumor progression and distant metastasis in human breast cancer. Breast Cancer Res Treat 140:49–61. https://doi.org/10.1007/s10549-013-2599-6

    Article  CAS  PubMed  Google Scholar 

  28. Gillespie E, Leeman SE, Watts LA, Coukos JA, O’Brien MJ, Cerda SR, Farraye FA, Stucchi AF, Becker JM (2011) Truncated neurokinin-1 receptor is increased in colonic epithelial cells from patients with colitis-associated cancer. Proc Natl Acad Sci 108:17420–17425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang L, Wang L, Dong D, Wang Z, Ji W, Yu M, Zhang F, Niu R, Zhou Y (2019) MiR-34b/c-5p and the neurokinin-1 receptor regulate breast cancer cell proliferation and apoptosis. Cell Prolif 52:e12527. https://doi.org/10.1111/cpr.12527

    Article  CAS  PubMed  Google Scholar 

  30. Molinos-Quintana A, Trujillo-Hacha P, Piruat JI, Bejarano-Garcia JA, Garcia-Guerrero E, Perez-Simon JA, Munoz M (2019) Human acute myeloid leukemia cells express Neurokinin-1 receptor, which is involved in the antileukemic effect of Neurokinin-1 receptor antagonists. Invest New Drugs 37:17–26. https://doi.org/10.1007/s10637-018-0607-8

    Article  CAS  PubMed  Google Scholar 

  31. Singh S, Kumaravel S, Dhole S, Roy S, Pavan V, Chakraborty S (2021) Neuropeptide substance P enhances inflammation-mediated tumor signaling pathways and migration and proliferation of head and neck cancers. Indian J Surg Oncol 12:93–102. https://doi.org/10.1007/s13193-020-01210-7

    Article  PubMed  Google Scholar 

  32. Munoz M, Rosso M, Aguilar FJ, Gonzalez-Moles MA, Redondo M, Esteban F (2008) NK-1 receptor antagonists induce apoptosis and counteract substance P-related mitogenesis in human laryngeal cancer cell line HEp-2. Invest New Drugs 26:111–118. https://doi.org/10.1007/s10637-007-9087-y

    Article  CAS  PubMed  Google Scholar 

  33. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348. https://doi.org/10.1038/35077213

    Article  CAS  PubMed  Google Scholar 

  34. Bashash D, Safaroghli-Azar A, Bayati S, Razani E, Pourbagheri-Sigaroodi A, Gharehbaghian A, Momeny M, Sanjadi M, Rezaie-Tavirani M, Ghaffari SH (2018) Neurokinin-1 receptor (NK1R) inhibition sensitizes APL cells to anti-tumor effect of arsenic trioxide via restriction of NF-kappaB axis: Shedding new light on resistance to Aprepitant. Int J Biochem Cell Biol 103:105–114. https://doi.org/10.1016/j.biocel.2018.08.010

    Article  CAS  PubMed  Google Scholar 

  35. Wang F, Liu S, Liu J, Feng F, Guo Y, Zhang W, Zheng G, Wang Q, Cai L, Guo M, Lian X, Xu G, Zhang H (2019) SP promotes cell proliferation in esophageal squamous cell carcinoma through the NK1R/Hes1 axis. Biochem Biophys Res Commun 514:1210–1216. https://doi.org/10.1016/j.bbrc.2019.05.092

    Article  CAS  PubMed  Google Scholar 

  36. Luo W, Sharif TR, Sharif M (1996) Substance P-induced mitogenesis in human astrocytoma cells correlates with activation of the mitogen-activated protein kinase signaling pathway. Cancer Res 56:4983–4991

    CAS  PubMed  Google Scholar 

  37. Wang JG, Yu J, Hu JL, Yang WL, Ren H, Ding D, Zhang L, Liu XP (2015) Neurokinin-1 activation affects EGFR related signal transduction in triple negative breast cancer. Cell Signal 27:1315–1324. https://doi.org/10.1016/j.cellsig.2015.03.015

    Article  CAS  PubMed  Google Scholar 

  38. Deng XT, Tang SM, Wu PY, Li QP, Ge XX, Xu BM, Wang HS, Miao L (2019) SP/NK-1R promotes gallbladder cancer cell proliferation and migration. J Cell Mol Med 23:7961–7973. https://doi.org/10.1111/jcmm.14230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mohammadi F, Javid H, Afshari AR, Mashkani B, Hashemy SI (2020) Substance P accelerates the progression of human esophageal squamous cell carcinoma via MMP-2, MMP-9, VEGF-A, and VEGFR1 overexpression. Mol Biol Rep 47:4263–4272. https://doi.org/10.1007/s11033-020-05532-1

    Article  CAS  PubMed  Google Scholar 

  40. Muñoz M, Rosso M (2010) The NK-1 receptor antagonist aprepitant as a broad spectrum antitumor drug. Invest New Drugs 28:187–193

    Article  PubMed  Google Scholar 

  41. Munoz M, Covenas R (2011) NK-1 receptor antagonists: a new paradigm in pharmacological therapy. Curr Med Chem 18:1820–1831. https://doi.org/10.2174/092986711795496746

    Article  CAS  PubMed  Google Scholar 

  42. Munoz M, Covenas R (2020) The Neurokinin-1 receptor antagonist aprepitant: an intelligent bullet against cancer? Cancers (Basel). https://doi.org/10.3390/cancers12092682

    Article  PubMed Central  Google Scholar 

  43. Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ, Reines SA, Liu G, Snavely D, Wyatt-Knowles E, Hale JJ, Mills SG, MacCoss M, Swain CJ, Harrison T, Hill RG, Hefti F, Scolnick EM, Cascieri MA, Chicchi GG, Sadowski S, Williams AR, Hewson L, Smith D, Carlson EJ, Hargreaves RJ, Rupniak NM (1998) Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281:1640–1645. https://doi.org/10.1126/science.281.5383.1640

    Article  CAS  PubMed  Google Scholar 

  44. Poli-Bigelli S, Rodrigues-Pereira J, Carides AD, Julie Ma G, Eldridge K, Hipple A, Evans JK, Horgan KJ, Lawson F and Aprepitant Protocol 054 Study G (2003) Addition of the neurokinin 1 receptor antagonist aprepitant to standard antiemetic therapy improves control of chemotherapy-induced nausea and vomiting. Results from a randomized, double-blind, placebo-controlled trial in Latin America. Cancer 97:3090–3098. https://doi.org/10.1002/cncr.11433

    Article  CAS  Google Scholar 

  45. Zhang Y-X, Li X-F, Yuan G-Q, Hu H, Song X-Y, Li J-Y, Miao X-K, Zhou T-X, Yang W-L, Zhang X-W (2017) β-Arrestin 1 has an essential role in neurokinin-1 receptor-mediated glioblastoma cell proliferation and G2/M phase transition. J Biol Chem 292:8933–8947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ilmer M, Garnier A, Vykoukal J, Alt E, von Schweinitz D, Kappler R, Berger M (2015) Targeting the Neurokinin-1 receptor compromises canonical Wnt signaling in hepatoblastoma. Mol Cancer Ther 14:2712–2721. https://doi.org/10.1158/1535-7163.MCT-15-0206

    Article  CAS  PubMed  Google Scholar 

  47. Bayati S, Razani E, Bashash D, Safaroghli-Azar A, Safa M, Ghaffari SH (2018) Antileukemic effects of neurokinin-1 receptor inhibition on hematologic malignant cells: a novel therapeutic potential for aprepitant. Anticancer Drugs 29:243–252. https://doi.org/10.1097/cad.0000000000000591

    Article  CAS  PubMed  Google Scholar 

  48. Li X, Ma G, Ma Q, Li W, Liu J, Han L, Duan W, Xu Q, Liu H, Wang Z, Sun Q, Wang F, Wu E (2013) Neurotransmitter substance P mediates pancreatic cancer perineural invasion via NK-1R in cancer cells. Mol Cancer Res 11:294–302. https://doi.org/10.1158/1541-7786.MCR-12-0609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No official funding to declare. This research project was based on Mahtab Mozafari 's thesis and self-funded.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SE, and SIH. Methodology: SE and MM. Formal analysis: SE, MM and RAD. Writing—original draft preparation: SE and MM.; writing—review and editing: All authors.; Supervision: SHA and RAD. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Reza Assaran Darban or Seyed Isaac Hashemy.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Ethical approval

Not applicable (Humans and animals were not studied).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozafari, M., Ebrahimi, S., Darban, R.A. et al. Potential in vitro therapeutic effects of targeting SP/NK1R system in cervical cancer. Mol Biol Rep 49, 1067–1076 (2022). https://doi.org/10.1007/s11033-021-06928-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06928-3

Keywords

Navigation