Skip to main content

Advertisement

Log in

Roles of full-length and truncated neurokinin-1 receptors on tumor progression and distant metastasis in human breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Substance P (SP) regulates various physiologic and pathophysiologic responses predominantly by acting through its primary receptor, the neurokinin-1 receptor (NK1R). There are two naturally occurring forms of NK1R: full-length NK1R-FL and truncated NK1R-Tr. SP-coupled NK1R can directly or indirectly regulate the proliferation and metastatic progression of many types of human cancer cells. However, the exact roles played by the two isoforms of NK1R in breast carcinogenesis still remain largely unclear. In the present study, we first examined the expression profile of total NK1Rs, NK1R-FL and NK1R-Tr in multiple breast cancer cell lines as well as in breast tumor samples. We found that total NK1Rs are present in normal, benign and breast tumor tissues; while, NK1R-FL expression are significantly decreased in tumor specimens, particularly in metastatic carcinomas. More interestingly, NK1R-FL is highly expressed in nontumorigenic HBL-100 breast cells, whereas MDA-MB-231, MCF-7 and T47D breast cancer cells express only NK1R-Tr. To further investigate potential implications of NK1R-FL and NK1R-Tr in the malignant phenotypes of breast cancer, we studied the impacts of ectopically overexpressed NK1R-FL and NK1R-Tr in MDA-MB-231 and HBL-100 cells, respectively. Our in vitro and in vivo data showed that NK1R-FL expression was inversely associated with proliferation, invasiveness and metastasis of MDA-MB-231 cells, but overexpression of NK1R-Tr was able to promote malignant transformation of HBL-100 cells and NK1R-Tr may contribute to tumor progression and promote distant metastasis in human breast cancer. A long-term treatment of NK1R antagonist ASN-1377642 exerted antitumor action in breast cancer cells with NK1R-Tr high expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hyder SM, Chiappetta C, Stancel GM (2001) Pharmacological and endogenous progestins induce vascular endothelial growth factor expression in human breast cancer cells. Int J Cancer 92(4):469–473

    Article  PubMed  CAS  Google Scholar 

  2. McEarchern JA, Kobie JJ, Mack V, Wu RS, Meade-Tollin L, Arteaga CL, Dumont N, Besselsen D, Seftor E, Hendrix MJ, Katsanis E, Akporiaye ET (2001) Invasion and metastasis of a mammary tumor involves TGF-beta signaling. Int J Cancer 91(1):76–82

    Article  PubMed  CAS  Google Scholar 

  3. Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verástegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56

    Article  PubMed  Google Scholar 

  4. Nawa H, Hirose T, Takashima H, Inayama S, Nakanishi S (1983) Nucleotide sequences of cloned cDNAs for two types of bovine brain substance P precursor. Nature 306(5938):32–36

    Article  PubMed  CAS  Google Scholar 

  5. Kotani H, Hoshimaru M, Nawa H, Nakanishi S (1986) Structure and gene organization of bovine neuromedin K precursor. Proc Natl Acad Sci USA 83(18):7074–7078

    Article  PubMed  CAS  Google Scholar 

  6. Zhang Y, Lu L, Furlonger C, Wu GE, Paige CJ (2000) Hemokinin is a hematopoietic-specific tachykinin that regulates B lymphopoiesis. Nat Immunol 1(5):392–397

    Article  PubMed  CAS  Google Scholar 

  7. Rozengurt E (2002) Neuropeptide as growth factors for normal and cancerous cells. Trends Endocrinol Metab 13(3):128–134

    Article  PubMed  CAS  Google Scholar 

  8. Muñoz M, Rosso M, Coveñas R (2010) A new frontier in the treatment of cancer: NK-1 receptor antagonists. Curr Med Chem 17(6):504–516

    Article  PubMed  Google Scholar 

  9. Rosso M, Robles-Frías MJ, Coveñas R, Salinas-Martín MV, Muñoz M (2008) The NK-1 receptor is expressed in human primary gastric and colon adenocarcinomas and is involved in the antitumor action of L-733,060 and the mitogenic action of substance P on human gastrointestinal cancer cell lines. Tumour Biol 29(4):245–254

    Article  PubMed  CAS  Google Scholar 

  10. Brener S, González-Moles MA, Tostes D, Esteban F, Gil-Montoya JA, Ruiz-Avila I, Bravo M, Muñoz M (2009) A role for the substance P/NK-1 receptor complex in cell proliferation in oral squamous cell carcinoma. Anticancer Res 29(6):2323–2329

    PubMed  Google Scholar 

  11. DuBois SG, Kalika Y, Lukens JN, Brodeur GM, Seeger RC, Atkinson JB, Haase GM, Black CT, Perez C, Shimada H, Gerbing R, Stram DO, Matthay KK (1999) Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol 21(3):181–189

    Article  PubMed  CAS  Google Scholar 

  12. Oh HS, Moharita A, Potian JG, Whitehead IP, Livingston JC, Castro TA, Patel PS, Rameshwar P (2004) Bone marrow stroma influences transforming growth factor-beta production in breast cancer cells to regulate c-myc activation of the preprotachykinin-I gene in breast cancer cells. Cancer Res 64(17):6327–6336

    Article  PubMed  CAS  Google Scholar 

  13. Lang K, Drell TL 4th, Lindecke A, Niggemann B, Kaltschmidt C, Zaenker KS, Entschladen F (2004) Induction of a metastatogenic tumor cell type by neurotransmitters and its pharmacological inhibition by established drugs. Int J Cancer 112(2):231–238

    Article  PubMed  CAS  Google Scholar 

  14. Satake H, Kawada T (2006) Overview of the primary structure, tissue distribution, and functions of tachykinins and their receptors. Curr Drug Targets 7(8):963–974

    Article  PubMed  CAS  Google Scholar 

  15. Fong TM, Anderson SA, Yu H, Huang RR, Strader CD (1992) Differential activation of intracellular effector by two isoforms of human neurokinin-1 receptor. Mol Pharmacol 41(1):24–30

    PubMed  CAS  Google Scholar 

  16. Lai JP, Ho WZ, Kilpatrick LE, Wang X, Tuluc F, Korchak HM, Douglas SD (2006) Full-length and truncated neurokinin-1 receptor expression and function during monocyte/macrophage differentiation. Proc Natl Acad Sci USA 103(20):7771–7776

    Article  PubMed  CAS  Google Scholar 

  17. Rao G, Patel PS, Idler SP, Maloof P, Gascon P, Potian JA, Rameshwar P (2004) Facilitating role of preprotachykinin-I gene in the integration of breast cancer cells within the stromal compartment of the bone marrow: a model of early cancer progression. Cancer Res 64(8):2874–2881

    Article  PubMed  CAS  Google Scholar 

  18. Ramkissoon SH, Patel PS, Taborga M, Rameshwar P (2007) Nuclear factor-κB is central to the expression of truncated neurokinin-1 receptor in breast cancer: implication for breast cancer: implication for breast cancer cell quiescence within bone marrow stroma. Cancer Res 67(4):1653–1659

    Article  PubMed  CAS  Google Scholar 

  19. Gillespie E, Leeman SE, Coukos JA, O’Brien MJ, Cerda SR, Farraye FA, Stucchi AF, Becker JM (2011) Truncated neurokinin-1 receptor is increased in colonic epithelial cells from patients with colitis-associated cancer. Proc Natl Acad Sci USA 108(42):17420–17425

    Article  PubMed  CAS  Google Scholar 

  20. Patel HJ, Ramkissoon SH, Patel PS, Rameshwar P (2005) Transformation of breast cells by truncated neurokinin-1 receptor is secondary to activation by preprotachykinin-A peptides. Proc Natl Acad Sci USA 102(48):17436–17441

    Article  PubMed  CAS  Google Scholar 

  21. Lai JP, Lai S, Tuluc F, Tansky MF, Kilpatrick LE, Leeman SE, Douglas SD (2008) Differences in the length of the carboxyl terminus mediate functional properties of neurokinin-1 receptor. Proc Natl Acad Sci USA 105(34):12605–12610

    Article  PubMed  CAS  Google Scholar 

  22. Friess H, Zhu Z, Liard V, Shi X, Shrikhande SV, Wang L, Lieb K, Korc M, Palma C, Zimmermann A, Reubi JC, Büchler MW (2003) Neurokinin-1 receptor expression and its potential effects on tumor growth in human pancreatic cancer. Lab Invest 83(5):731–742

    PubMed  CAS  Google Scholar 

  23. Horstmann S, Kahle PJ, Borasio GD (1998) Inhibitors of p38 mitogen activated protein kinase promote neuronal survival in vitro. J Neurosci Res 52(4):483–490

    Article  PubMed  CAS  Google Scholar 

  24. Seegers HC, Hood VC, Kidd BL, Cruwys SC, Walsh DA (2003) Enhancement of angiogenesis by endogenous substance P release and neurokinin-1 receptors during neurogenic inflammation. J Pharmacol Exp Ther 306(1):8–12

    Article  PubMed  CAS  Google Scholar 

  25. Khawaja AM, Rogers DF (1996) Tachykinins: receptor to effector. Int J Biochem Cell Biol 28(7):721–738

    Article  PubMed  CAS  Google Scholar 

  26. Maggi CA, Schwartz TW (1997) The dual nature of the tachykinin NK1 receptor. Trends Pharmacol Sci 18(10):351–362

    Article  PubMed  CAS  Google Scholar 

  27. Horstmann S, Kahle PJ, Borasio GD (1998) Inhibitors of p38 mitogen activated protein kinase promote neuronal survival in vitro. J Neurosci Res 52(4):483–490

    Article  PubMed  CAS  Google Scholar 

  28. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270(5240):1326–1331

    Article  PubMed  CAS  Google Scholar 

  29. Böhm SK, Khitin LM, Smeekens SP, Grady EF, Payan DG, Bunnett NW (1997) Identification of potential tyrosine containing endocytic motifs in the carboxyl-tail and seventh transmembrane domain of the neurokinin 1 receptor. J Biol Chem 272(4):2363–2372

    Article  PubMed  Google Scholar 

  30. Li H, Leeman SE, Slack BE, Hauser G, Saltsman WS, Krause JE, Blusztajn JK, Boyd ND (1997) A substance P (neurokinin-1) receptor mutant carboxyl-terminally truncated to resemble a naturally occurring receptor isoform displays enhanced responsiveness and resistance to desensitization. Proc Natl Acad Sci USA 94(17):9475–9480

    Article  PubMed  CAS  Google Scholar 

  31. Nowicki M, Ostalska-Nowicka D, Kondraciuk B, Miskowiak B (2007) The significance of substance P in physiological and malignant haematopoiesis. J Clin Pathol 60(7):749–755 (Review)

    Article  PubMed  CAS  Google Scholar 

  32. Böckmann S (2002) Substance P (NK1) receptor expression by human colonic epithelial cell line Caco-2. Peptides 23(10):1783–1791

    Article  PubMed  Google Scholar 

  33. Muñoz M, Rosso M, Pérez A, Coveñas R, Rosso R, Zamarriego C, Piruat JI (2005) The NK1 receptor is involved in the antitumoural action of L-733,060 and in the mitogenic action of substance P on neuroblastoma and glioma cell lines. Neuropeptides 39(4):427–432

    Article  PubMed  Google Scholar 

  34. Muñoz M, Pérez A, Rosso M, Zamarriego C, Rosso R (2004) Antitumoral action of the neurokinin-1 receptor antagonist L-733060 on human melanoma cell lines. Melanoma Res 14(3):183–188

    Article  PubMed  Google Scholar 

  35. Muñoz M, Rosso M, Robles-Frias MJ, Salinas-Martín MV, Rosso R, González-Ortega A, Coveñas R (2010) The NK-1 receptor is expressed in human melanoma and is involved in the antitumor action of the NK-1 receptor antagonist aprepitant on melanoma cell lines. Lab Invest 90(8):1259–1269

    Article  PubMed  Google Scholar 

  36. Lang K, Drell TL 4th, Lindecke A, Niggemann B, Kaltschmidt C, Zaenker KS, Entschladen F (2004) Induction of a metastatogenic tumor cell type by neurotransmitters and its pharmacological inhibition by established drugs. Int J Cancer 112(2):231–238

    Article  PubMed  CAS  Google Scholar 

  37. Muñoz M, Rosso M, Coveñas R, Montero I, González-Moles MA, Robles MJ (2005) Neurokinin-1 receptors located in human retinoblastoma cell lines: antitumor action of its antagonist, L-732,138. Invest Ophthalmol Vis Sci 48(6):2775–2781

    Article  Google Scholar 

  38. Chernova I, Lai JP, Li H, Schwartz L, Tuluc F, Korchak HM, Douglas SD, Kilpatrick LE (2009) Substance P (SP) enhances CCL5-induced chemotaxis and intracellular signaling in human monocytes, which express the truncated neurokinin-1 receptor (NK1R). J Leukoc Biol 85(1):154–164

    Article  PubMed  CAS  Google Scholar 

  39. Monaco-Shawver L, Schwartz L, Tuluc F, Guo CJ, Lai JP, Gunnam SM, Kilpatrick LE, Banerjee PP, Douglas SD, Orange JS (2011) Substance P inhibits natural killer cell cytotoxicity through the neurokinin-1 receptor. J Leukoc Biol 89(1):113–125

    Article  PubMed  CAS  Google Scholar 

  40. Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders J, Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D, Sondak V (2000) Moleculer classification of cutaneous malignant melanoma by gene expression profiling. Nature 406(6795):536–540

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Science and Technology of China (973 Program: 2009CB918903), the National Natural Science foundation of China (30670802), the Science and Technology of Tianjin (09JCZDJC19700) to Z. Yao.; the National Natural Science foundation of China (81201653) to Y. Zhou.

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Yang or Zhi Yao.

Additional information

Y. Zhou and L. Zhao contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Zhao, L., Xiong, T. et al. Roles of full-length and truncated neurokinin-1 receptors on tumor progression and distant metastasis in human breast cancer. Breast Cancer Res Treat 140, 49–61 (2013). https://doi.org/10.1007/s10549-013-2599-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2599-6

Keywords

Navigation