Skip to main content

Advertisement

Log in

An update on potential links between type 2 diabetes mellitus and Alzheimer’s disease

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) and type 2 diabetes (T2D) major feature is insulin resistance. Brain and peripheral insulin resistance lead to hyperglycemia, which contributes to the development of T2D-linked comorbidities, such as obesity and dyslipidemia. Individuals with hyperglycemia in AD present with neuronal loss, formation of plaques and tangles and reduced neurogenesis. Inflammation seems to play an essential role in the development of insulin resistance in AD and T2D. We conducted a literature review about the links between AD and T2D. Alterations in glucose metabolism result from changes in the expression of the insulin receptor substrates 1 and 2 (IRS-1 and IRS-2), and seem to be mediated by several inflammatory pathways being present in both pathologies. Although there are some similarities in the insulin resistance of AD and T2D, brain and peripheral insulin resistance also have their discrete features. Failure to activate IRS-1 is the hallmark of AD, while inhibition of IRS-2 is the main feature in T2D. Inflammation mediates the alterations in glucose metabolism in AD and T2D. Targeting inflammation and insulin receptors may be a successful strategy to prevent and ameliorate T2D and AD symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Sousa [26]

Fig. 2
Fig. 3

Adapted from De Felice; Ferreira [116]

Fig. 4

Similar content being viewed by others

References

  1. Alzheimer’s Association (2010) Alzheimer´s disease facts and figures. Alzheimer’s Assoc 13:1–74

    Google Scholar 

  2. Hölscher C (2014) First clinical data of the neuroprotective effects of nasal insulin application in patients with Alzheimer’s disease. Alzheimer’s Dement 10:33–37. https://doi.org/10.1016/j.jalz.2013.12.006

    Article  Google Scholar 

  3. Ferreira S, Vieira M, De Felice F (2007) Soluble protein oligomers as emerging toxins in Alzheimer’s and other amyloid diseases. IUBMB Life 59:332–345. https://doi.org/10.1080/15216540701283882

    Article  CAS  PubMed  Google Scholar 

  4. Ferreira ST, Klein WL, Ferreira KWL (2011) The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol Learn Mem 96:529–543. https://doi.org/10.1016/j.nlm.2011.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lourenco MV, Clarke JR, Frozza RL et al (2013) TNF-α mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer’s β-amyloid oligomers in mice and monkeys. Cell Metab 18:831–843. https://doi.org/10.1016/j.cmet.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  6. Ferreira ST, Clarke JR, Bomfim TR, De Felice FG (2014) Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer’s disease. Alzheimer’s Dement 10:S76–S83. https://doi.org/10.1016/j.jalz.2013.12.010

    Article  Google Scholar 

  7. Finch CE, Morgan TE (2003) Inflammatory processes of Alzheimer disease and aging. Proc Indian natn Sci Acad 178:165–177

    Google Scholar 

  8. Mandelkow E, Mandelkow E (1998) Tau in Alzheimer’s disease. Trends Cell Biol 8:425–427. https://doi.org/10.1016/S0962-8924(98)01368-3

    Article  CAS  PubMed  Google Scholar 

  9. Bomfim TR, Forny-germano L, Sathler LB et al (2012) An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer´s disease-associated Aβ oligomers. J Clin Invest 122:1339–1353. https://doi.org/10.1172/JCI57256DS1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morgen K, Frölich L (2015) The metabolism hypothesis of Alzheimer’s disease: from the concept of central insulin resistance and associated consequences to insulin therapy. J Neural Transm 122:499–504. https://doi.org/10.1007/s00702-015-1377-5

    Article  CAS  PubMed  Google Scholar 

  11. Abbott M, Wells DG, Fallon JR (1999) The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. J Neurosci 19:7300–7308

    Article  CAS  Google Scholar 

  12. Kern W, Fruehwald-schultes B, Deininger E et al (2001) Improving Influence of Insulin on cognitive function in humans. Clin Neuroendocrinol 74:270–280

    Article  CAS  Google Scholar 

  13. Craft S, Newcomer J, Kanne S et al (1996) Memory improvement following induced hyperinsulinemia in Alzheimer’s disease. Neurobiol Aging 17:123–130

    Article  CAS  Google Scholar 

  14. Chiu S-L, Chen C-M, Cline HT (2011) Insulin receptor signaling regulates synapse number, dendritic plasticity and circuit function in vivo. Neuron 58:708–719. https://doi.org/10.1016/j.neuron.2008.04.014.Insulin

    Article  Google Scholar 

  15. Brito-Moreira J, Lourenco MV, Oliveira MM et al (2017) Interaction of amyloid-β (Aβ) oligomers with neurexin 2α and neuroligin 1 mediates synapse damage and memory loss in mice. J Biol Chem 292:7327–7337. https://doi.org/10.1074/jbc.M116.761189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. American Diabetes Association (ADA) (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37(1):S81–90. https://doi.org/10.2337/dc14-S081

    Article  Google Scholar 

  17. Sousa RAL, Freitas DA, Leite HR (2019) Cross-talk between obesity and central nervous system: role in cognitive function. Interv Obes Diabetes 3:7–9. https://doi.org/10.31031/IOD.2019.03.000551

    Article  Google Scholar 

  18. De Sousa RAL, de Lima EV, da Silva TP et al (2019) Late cognitive consequences of gestational diabetes to the offspring, in a new mouse model. Mol Neurobiol 56:1–11. https://doi.org/10.1007/s12035-019-1624-0

    Article  CAS  Google Scholar 

  19. Wang F, Shang Y, Zhang R et al (2018) A SIRT1 agonist reduces cognitive decline in type 2 diabetic rats through antioxidative and anti-inflammatory mechanisms. Mol Med Rep 1–9: https://doi.org/10.3892/mmr.2018.9699

    Article  PubMed  PubMed Central  Google Scholar 

  20. Snel M, Gastaldelli A, Ouwens DM et al (2012) Effects of adding exercise to a 16-week very low-calorie diet in obese, insulin-dependent type 2 diabetes mellitus patients. J Clin Endocrinol Metab 97:2512–2520. https://doi.org/10.1210/jc.2011-3178

    Article  CAS  PubMed  Google Scholar 

  21. Cartee GD, Hepple RT, Bamman MM, Zierath JR (2016) Exercise Promotes Healthy Aging of Skeletal Muscle. Cell Metab 23:1034–1047. https://doi.org/10.1016/j.cmet.2016.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. IDF (2015) International Diabetes Federation, 7th edn. Diabetes Atlas, Brussels

    Google Scholar 

  23. da Marques N, SF, Abreu LC de, Santos BV dos, et al (2018) Cardiorespiratory parameters and glycated hemoglobin of patients with type 2 diabetes after a rehabilitation program. Medicine (Baltimore) 97:e9321. https://doi.org/10.1097/MD.0000000000009321

    Article  PubMed Central  Google Scholar 

  24. Stoeckli R, Keller U (2004) Nutritional fats and the risk of type 2 diabetes and cancer. Physiol Behav 83:611–615. https://doi.org/10.1016/j.physbeh.2004.07.030

    Article  CAS  PubMed  Google Scholar 

  25. American Diabetes Association (ADA) (2014) Standards of medical care in diabetes–2014. Diabetes Care 37(1):S14–80. https://doi.org/10.2337/dc14-S014

    Article  Google Scholar 

  26. Sousa RAL de (2017) Brief report of the effects of the aerobic, resistance, and high-intensity interval training in type 2 diabetes mellitus individuals Diabetes mellitus. Int J Diabetes Dev Ctries. https://doi.org/10.1007/s13410-017-0582-1

    Article  Google Scholar 

  27. Folli F, Saad MJ, Backer JM, Kahn CR (1992) Insulin stimulation of phosphatidylinositol 3-kinase activity and association with insulin receptor substrate 1 in liver and muscle of the intact rat. J Biol Chem 267:22171–22177

    CAS  PubMed  Google Scholar 

  28. McGlone ER, Tan TM (2018) Of mice not men? Actions of interleukin-6 on glucose tolerance. Cell Metab 27:1157–1158. https://doi.org/10.1016/j.cmet.2018.05.013

    Article  CAS  PubMed  Google Scholar 

  29. Lang Lehrskov L, Lyngbaek MP, Soederlund L et al (2018) Interleukin-6 delays gastric emptying in humans with direct effects on glycemic control. Cell Metab 27:1201–1211.e3. https://doi.org/10.1016/j.cmet.2018.04.008

    Article  CAS  PubMed  Google Scholar 

  30. de Sousa RAL, Pardono E (2014) Report on the resistance to insulin and the benefits of intense exercise in diabetes type 2. Saúde e Pesqui 7:335–340

    Google Scholar 

  31. Carvalho CRO, Carvalheira JBC, Lima MHM et al (2003) Novel signal transduction pathway for luteinizing hormone and its interaction with insulin: activation of Janus kinase/signal transducer and activator of transcription and phosphoinositol 3-kinase/Akt pathways. Endocrinology 144:638–647. https://doi.org/10.1210/en.2002-220706

    Article  CAS  PubMed  Google Scholar 

  32. Cai D, Dhe-Paganon S, Melendez P, a, et al (2003) Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5. J Biol Chem 278:25323–25330. https://doi.org/10.1074/jbc.M212430200

    Article  CAS  PubMed  Google Scholar 

  33. Sun XJ, Rothenberg P, Kahn R et al (1991) Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352:73–77

    Article  CAS  Google Scholar 

  34. Sun XJ, Wang L, Zhang Y et al (1995) Role of IRS-2 in insulin and cytokine signalling. Nature 377:173–177

    Article  CAS  Google Scholar 

  35. Copps KD, White MF (2014) Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55:2565–2582. https://doi.org/10.1007/s00125-012-2644-8.Regulation

    Article  Google Scholar 

  36. Carvalho CR, Brenelli SL, Silva AC et al (1996) Effect of aging on insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of rats. Endocrinology 137:151–159. https://doi.org/10.1210/endo.137.1.8536607

    Article  CAS  PubMed  Google Scholar 

  37. Lavan BE, Lienhard GE (1993) The insulin-elicited 60-kDa phosphotyrosine protein in rat adipocytes is associated with phosphatidylinositol 3-kinase. J Biol Chem 268:5921–5928

    CAS  PubMed  Google Scholar 

  38. Fantin VR, Wang Q, Lienhard GE et al (2000) Mice lacking insulin receptor substrate 4 exhibit mild defects in growth, reproduction, and glucose homeostasis. Am J Physiol Endocrinol Metab 278:127–133

    Article  Google Scholar 

  39. Withers DJ, Gutierrez JS, Towery H et al (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391:900–904

    Article  CAS  Google Scholar 

  40. Saad MJA, Araki E, Rothenberg PL et al (1992) Regulation of insulin receptor substrate-1 in liver and muscle of animal models of insulin resistance. J Clin Invest 90:1839–1849

    Article  CAS  Google Scholar 

  41. Röhling M, Herder C, Stemper T, Müssig K (2016) Influence of acute and chronic exercise on glucose uptake. J Diabetes Res 2016:1–33. https://doi.org/10.1155/2016/2868652

    Article  CAS  Google Scholar 

  42. Huang C, Thirone ACP, Huang X, Klip A (2005) Differential contribution of insulin receptor substrates 1 versus 2 to insulin signaling and glucose uptake in l6 myotubes. J Biol Chem 280:19426–19435. https://doi.org/10.1074/jbc.M412317200

    Article  CAS  PubMed  Google Scholar 

  43. Zierath JR (2002) Invited review: exercise training-induced changes in insulin signaling in skeletal muscle. J Appl Physiol 93:773–781. https://doi.org/10.1152/japplphysiol.00126.2002

    Article  CAS  PubMed  Google Scholar 

  44. Czech MP, Corvera S (1999) Signaling mechanisms that regulate glucose transport. J Biol Chem 274:1865–1868. https://doi.org/10.1074/jbc.274.4.1865

    Article  CAS  PubMed  Google Scholar 

  45. Backer JM Jr, Myer GM, Shoelson SE et al (1992) Phosphatidylinositol 3’-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J 11:3469–3479

    Article  CAS  Google Scholar 

  46. Ettcheto M, Busquets O, Camins A (2019) Potential preventive disease-modifying pharmacological strategies to delay late onset Alzheimer’s disease. Neural Regen Res 14:1721–1725. https://doi.org/10.4103/1673-5374.257513

    Article  PubMed  PubMed Central  Google Scholar 

  47. Figueiredo CP, Clarke JR, Ledo JH et al (2013) Memantine rescues transient cognitive impairment caused by high-molecular-weight aβ oligomers but not the persistent impairment induced by low-molecular-weight oligomers. J Neurosci 33:9626–9634. https://doi.org/10.1523/JNEUROSCI.0482-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ettcheto M, Sánchez-López E, Gómez-Mínguez Y et al (2018) Peripheral and central effects of memantine in a mixed preclinical mice model of obesity and familial Alzheimer’s disease. Mol Neurobiol 55:7327–7339. https://doi.org/10.1007/s12035-018-0868-4

    Article  CAS  PubMed  Google Scholar 

  49. Mucke L, Masliah E, Yu G et al (2000) High-level neuronal expression of Aβ 1–42 in wild-type human amyloid protein precursor transgenic mice : synaptotoxicity without plaque formation. J Neurosci 20:4050–4058

    Article  CAS  Google Scholar 

  50. Glenner GG, Wong CW (1984) Alzheimer´s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    Article  CAS  Google Scholar 

  51. Koo EH, Sisodia SS, Archert DR et al (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Neurobiology 87:1561–1565

    CAS  Google Scholar 

  52. Tanzi RE, Haines JL, Watkins PC et al (1988) Genetic linkage map of human chromosome. Genomics 136:129–136

    Article  Google Scholar 

  53. Ferreira T, Gralle M (2007) Structure and functions of the human amyloid precursor protein: the whole is more than the sum of its parts. Prog Neurobiol 82:11–32. https://doi.org/10.1016/j.pneurobio.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  54. Vassar R, Kovacs DM, Yan R, Wong PC (2010) The beta-secretase enzyme BACE in health and Alzheimer´s disease: regualation, cell biology, function, and therapeutic potential. Neuroscience 29:12787–12794. https://doi.org/10.1523/JNEUROSCI.3657-09.2009.The

    Article  Google Scholar 

  55. Bertram L, Lill CM, Tanzi RE (2010) Review the genetics of Alzheimer disease: back to the future. Neuron 68:270–281. https://doi.org/10.1016/j.neuron.2010.10.013

    Article  CAS  PubMed  Google Scholar 

  56. De SB, Vassar R, Golde T (2010) The secretases: enzymes with therapeutic potetntial in Alzheimer disease. Nat Rev Neurol 6:99–107. https://doi.org/10.1038/nrneurol.2009.218.The

    Article  Google Scholar 

  57. Lacor PN, Buniel MC, Chang L et al (2004) Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci 24:10191–10200. https://doi.org/10.1523/JNEUROSCI.3432-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee C-C, Kuo Y-M, Huang C-C, Hsu K-S (2009) Insulin rescues amyloid beta-induced impairment of hippocampal long-term potentiation. Neurobiol Aging 30:377–387. https://doi.org/10.1016/j.neurobiolaging.2007.06.014

    Article  CAS  PubMed  Google Scholar 

  59. Shankar GM, Li S, Mehta TH et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842. https://doi.org/10.1038/nm1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Escribano L, Simón A-M, Gimeno E et al (2010) Rosiglitazone rescues memory impairment in Alzheimer’s transgenic mice: mechanisms involving a reduced amyloid and tau pathology. Neuropsychopharmacology 35:1593–1604. https://doi.org/10.1038/npp.2010.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lourenco MV, Frozza RL, de Freitas GB et al (2019) Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat Med. https://doi.org/10.1038/s41591-018-0275-4

    Article  PubMed  PubMed Central  Google Scholar 

  62. Batista AF, Frony-Germano L, Clarke JR et al (2018) The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin receptor and synaptic pathology in a non-human primate model of Alzheimer´s disease. J Pathol 245:85–100. https://doi.org/10.1002/path.5056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Borchelt DR, Thinakaran G, Eckman CB et al (1996) Familial Alzheimer’s disease – linked presenilin 1 variants elevate Aβ 1–42/1–40 ratio in vitro and in vivo. Neuron 17:1005–1013

    Article  CAS  Google Scholar 

  64. Schmechel D, Saunders A, Strittmatter W et al (1993) Increased amyloid,8-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Neurobiology 90:9649–9653

    CAS  Google Scholar 

  65. Strittmatter WJ, Saunders ANNM, Schmechel D et al (1993) Apolipoprotein E: high-avidity binding to, B-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease 4°C. Med Sci 90:1977–1981

    CAS  Google Scholar 

  66. Soto C, Estrada L, Castilla J (2006) Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends Biochem Sci 31:150–155. https://doi.org/10.1016/j.tibs.2006.01.002

    Article  CAS  PubMed  Google Scholar 

  67. Gleckman AM, Evans RJ, Bell MD et al (2000) Optic nerve damage in shaken baby syndrome detection by β-amyloid precursor protein immunohistochemistry. Arch Pathol Lab Med 124:251–256

    CAS  PubMed  Google Scholar 

  68. Hogan-Cann AD, Anderson CM (2016) Physiological roles of non-neuronal NMDA receptors. Trends Pharmacol Sci 37:750–767. https://doi.org/10.1016/j.tips.2016.05.012

    Article  CAS  PubMed  Google Scholar 

  69. Zhao W-Q, Santini F, Breese R et al (2010) Inhibition of calcineurin-mediated endocytosis and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors prevents amyloid beta oligomer-induced synaptic disruption. J Biol Chem 285:7619–7632. https://doi.org/10.1074/jbc.M109.057182

    Article  CAS  PubMed  Google Scholar 

  70. Lacor PN, Buniel MC, Furlow PW et al (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807. https://doi.org/10.1523/JNEUROSCI.3501-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Magdesian MH, Nery AA, Martins AHB et al (2005) Peptide blockers of the inhibition of neuronal nicotinic acetylcholine receptors by amyloid beta. J Biol Chem 280:31085–31090. https://doi.org/10.1074/jbc.M502406200

    Article  CAS  PubMed  Google Scholar 

  72. Magdesian MH, Carvalho MMVF, Mendes FA et al (2008) Amyloid-beta binds to the extracellular cysteine-rich domain of Frizzled and inhibits Wnt/beta-catenin signaling. J Biol Chem 283:9359–9368. https://doi.org/10.1074/jbc.M707108200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sturchler E, Galichet A, Weibel M et al (2008) Site-specific blockade of RAGE-Vd prevents amyloid-beta oligomer neurotoxicity. J Neurosci 28:5149–5158. https://doi.org/10.1523/JNEUROSCI.4878-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Knowles JK, Rajadas J, Nguyen T-VV et al (2009) The p75 neurotrophin receptor promotes amyloid-beta(1–42)-induced neuritic dystrophy in vitro and in vivo. J Neurosci 29:10627–10637. https://doi.org/10.1523/JNEUROSCI.0620-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Neves FS, Marques PT, Aragão FB et al (2016) Brain-defective insulin signaling is associated to late cognitive impairment in post-septic mice. Mol Neurobiol. https://doi.org/10.1007/s12035-016-0307-3

    Article  PubMed  Google Scholar 

  76. De Felice FG, Vieira M, Bomfim T et al (2009) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci USA 106:1971–1976. https://doi.org/10.1073/pnas.0809158106

    Article  PubMed  Google Scholar 

  77. Hotamisligil GS, Peraldi P, Budavari A et al (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-ac- and obesity-induced insulin resistance. Science 80(271):665–668

    Article  Google Scholar 

  78. Boden G, Shulman GI (2002) Free fatty acids in obesity and type 2 diabetes : defining their role in the development of insulin resistance and β -cell dysfunction. Eur J Clin Invest 32:14–23

    Article  CAS  Google Scholar 

  79. Hirosumi J, Tuncman G, Chang L et al (2002) A central role for JNK in obesity and insulin resistance. Nature 2:10–13

    Google Scholar 

  80. Gregor MF, Yang L, Fabbrini E et al (2009) Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 58:693–700. https://doi.org/10.2337/db08-1220.M.F.G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Arnold SE, Lucki I, Brookshire BR et al (2014) High fat diet produces brain insulin resistance, synaptodendritic abnormalities and altered behavior in mice. Neurobiol Dis 67:79–87. https://doi.org/10.1016/j.nbd.2014.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. de la Monte SM (2017) Insulin resistance and neurodegeneration: progress towards the development of new therapeutics for Alzheimer’s disease. Drugs 77:47–65. https://doi.org/10.1007/s40265-016-0674-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Maurer MH, Geomor HK, Bürgers HF et al (2006) Adult neural stem cells express glucose transporters GLUT1 and GLUT3 and regulate GLUT3 expression. FEBS Lett 580:4430–4434. https://doi.org/10.1016/j.febslet.2006.07.012

    Article  CAS  PubMed  Google Scholar 

  84. Pratchayasakul W, Kerdphoo S, Petsophonsakul P et al (2011) Effects of high-fat diet on insulin receptor function in rat hippocampus and the level of neuronal corticosterone. Life Sci 88:619–627. https://doi.org/10.1016/j.lfs.2011.02.003

    Article  CAS  PubMed  Google Scholar 

  85. Nichols MR, St-Pierre M-K, Wendeln A-C et al (2019) Inflammatory mechanisms in neurodegeneration. J Neurochem. https://doi.org/10.1111/jnc.14674

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chen Z, Trapp BD (2016) Microglia and neuroprotection. J Neurochem 136(Suppl):10–17. https://doi.org/10.1111/jnc.13062

    Article  CAS  PubMed  Google Scholar 

  87. Bhat R, Crowe EP, Bitto A et al (2012) Astrocyte senescence as a component of Alzheimer’s disease. PLoS ONE 7:1–10. https://doi.org/10.1371/journal.pone.0045069

    Article  CAS  Google Scholar 

  88. Busquets O, Ettcheto M, Eritja À et al (2019) c-Jun N-terminal Kinase 1 ablation protects against metabolic-induced hippocampal cognitive impairments. J Mol Med 97:1723–1733. https://doi.org/10.1007/s00109-019-01856-z

    Article  CAS  PubMed  Google Scholar 

  89. Gonçalves RA, Wijesekara N, Fraser PE, De Felice FG (2019) The link between tau and insulin signaling: implications for Alzheimer’s disease and other tauopathies. Front Cell Neurosci 13:1–7. https://doi.org/10.3389/fncel.2019.00017

    Article  CAS  Google Scholar 

  90. Folch J, Olloquequi J, Ettcheto M et al (2019) The involvement of peripheral and brain insulin resistance in late onset Alzheimer’s dementia. Front Aging Neurosci 11:1–16. https://doi.org/10.3389/fnagi.2019.00236

    Article  CAS  Google Scholar 

  91. Folch J, Ettcheto M, Busquets O et al (2018) The implication of the brain insulin receptor in late onset Alzheimer’s disease dementia. Pharmaceuticals 11:1–16. https://doi.org/10.3390/ph11010011

    Article  CAS  Google Scholar 

  92. Grillo CA, Piroli GG, Lawrence RC et al (2015) Hippocampal insulin resistance impairs spatial learning and synaptic plasticity. Diabetes 64:3927–3936. https://doi.org/10.2337/db15-0596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ferrario CR, Reagan LP (2018) Insulin-mediated synaptic plasticity in the CNS: anatomical, functional and temporal contexts. Physiol Behav 136:182–191. https://doi.org/10.1016/j.physbeh.2017.03.040

    Article  CAS  Google Scholar 

  94. De Sousa RAL, Improta-caria AC, De J-S et al (2020) High-intensity resistance training induces changes in cognitive function, but not in locomotor activity or anxious behavior in rats induced to type 2 diabetes. Physiol Behav 223:1–7. https://doi.org/10.1016/j.physbeh.2020.112998

    Article  CAS  Google Scholar 

  95. Plum L, Schubert M, Brüning JC, Bru JC (2005) The role of insulin receptor signaling in the brain. Trends Endocrinol Metab 16:59–65. https://doi.org/10.1016/j.tem.2005.01.008

    Article  CAS  PubMed  Google Scholar 

  96. Zhao W, Alkon DL (2001) Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177:125–134

    Article  CAS  Google Scholar 

  97. Chiu SL, Cline HT (2010) Insulin receptor signaling in the development of neuronal structure and function. Neural Dev 5:1–18. https://doi.org/10.1186/1749-8104-5-7

    Article  CAS  Google Scholar 

  98. Costello DA, Claret M, Al-Qassab H et al (2012) Brain deletion of insulin receptor substrate 2 disrupts hippocampal synaptic plasticity and metaplasticity. PLoS ONE 7:30–34. https://doi.org/10.1371/journal.pone.0031124

    Article  CAS  Google Scholar 

  99. Gralle M (2017) The neuronal insulin receptor in its environment. J Neurochem 140:359–367. https://doi.org/10.1111/jnc.13909

    Article  CAS  PubMed  Google Scholar 

  100. Boyd FT, Clarke DW, Muther TF, Raizada MK (1985) Insulin receptors and insulin modulation of norepinephrine uptake in neuronal cultures from rat brain. J Biol Chem 260:15880–15884

    CAS  PubMed  Google Scholar 

  101. Sauter A, Goldstein M, Engel J, Ueta K (1983) Effect of insulin on central catecholamines. Brain Res 260:330–333. https://doi.org/10.1016/0006-8993(83)90691-1

    Article  CAS  PubMed  Google Scholar 

  102. Könner AC, Hess S, Tovar S et al (2011) Role for insulin signaling in catecholaminergic neurons in control of energy homeostasis. Cell Metab 13:720–728. https://doi.org/10.1016/j.cmet.2011.03.021

    Article  CAS  PubMed  Google Scholar 

  103. Kleinridders A, Cai W, Cappellucci L et al (2015) Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc Natl Acad Sci USA 112:3463–3468. https://doi.org/10.1073/pnas.1500877112

    Article  CAS  PubMed  Google Scholar 

  104. O’Malley D, Shanley LJ, Harvey J (2003) Insulin inhibits rat hippocampal neurones via activation of ATP-sensitive K+ and large conductance Ca2+-activated K+ channels. Neuropharmacology 44:855–863. https://doi.org/10.1016/S0028-3908(03)00081-9

    Article  CAS  PubMed  Google Scholar 

  105. Hannaoui S, Shim SY, Cheng YC et al (2014) Cholesterol balance in prion diseases and Alzheimer’s disease. Viruses 6:4505–4535. https://doi.org/10.3390/v6114505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rojek A, Niedziela M (2010) Insulin receptor and its relationship with different forms of insulin resistance. Adv Cell Biol 1:1–32. https://doi.org/10.2478/v10052-010-0004-8

    Article  Google Scholar 

  107. Sullivan PW, Ghushchyan V, Ben-Joseph RH (2008) The effect of obesity and cardiometabolic risk factors on expenditures and productivity in the United States. Obesity (Silver Spring) 16:2155–2162. https://doi.org/10.1038/oby.2008.325

    Article  Google Scholar 

  108. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806

    Article  CAS  Google Scholar 

  109. Exalto LG, Whitmer RA, Kappele LJ, Biessels GJ (2012) An update on type 2 diabetes, vascular dementia and Alzheimer’s disease. Exp Gerontol 47:858–864. https://doi.org/10.1016/j.exger.2012.07.014

    Article  CAS  PubMed  Google Scholar 

  110. Kwok MK, Lin SL, Schooling CM (2018) Re-thinking Alzheimer’s disease therapeutic targets using gene-based tests. EBioMedicine. https://doi.org/10.1016/j.ebiom.2018.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  111. Egan MF, Kost J, Tariot PN et al (2018) Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease. N Engl J Med 378:1691–1703. https://doi.org/10.1056/NEJMoa1706441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Panza F, Lozupone M, Solfrizzi V et al (2018) BACE inhibitors in clinical development for the treatment of Alzheimer’s disease. Expert Rev Neurother 18:847–857. https://doi.org/10.1080/14737175.2018.1531706

    Article  CAS  PubMed  Google Scholar 

  113. Hawkes N (2017) Merck ends trial of potential Alzheimer’s drug verubecestat. BMJ 356:j845. https://doi.org/10.1136/bmj.j845

    Article  PubMed  Google Scholar 

  114. Gylys KH, Fein JA, Yang F et al (2004) Synaptic changes in Alzheimer’s disease accompanied by decreased PSD-95 fluorescence. Neurobiology 165:1809–1817

    CAS  Google Scholar 

  115. Saad MJA, Folli F, Kahn JA, Kahn CR (1993) Rapid publication. J Clin Invest 92:2065–2072

    Article  CAS  Google Scholar 

  116. De Felice FG, Ferreira ST (2014) Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes 63:2262–2272. https://doi.org/10.2337/db13-1954

    Article  PubMed  Google Scholar 

  117. Fealy CE, Nieuwoudt S, Foucher JA et al (2018) Functional high intensity exercise training ameliorates insulin resistance and cardiometabolic risk factors in type 2 diabetes. Exp Physio. https://doi.org/10.1113/EP086844

    Article  PubMed  PubMed Central  Google Scholar 

  118. Bordier L, Doucet J, Boudet J, Bauduceau B (2014) Update on cognitive decline and dementia in elderly patients with diabetes. Diabetes Metab 40:331–337. https://doi.org/10.1016/j.diabet.2014.02.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Coordenação de Pessoal de Ensino Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG). We also thank to the CIPq-Saúde of UFVJM for the physical support to the development of this study.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

RALS conceived the review and performed the literature search; RALS wrote the manuscript, with contributions from ARH; RALS, ARH, DAF, VAM, ACRL, HRL analyzed and critically discussed the data and reviewed the manuscript; RALS and HRL supervised the review. All authors have read and approved the final version of the manuscript, and agree with the order of presentation of the authors.

Corresponding author

Correspondence to Ricardo Augusto Leoni De Sousa.

Ethics declarations

Conflicts of interests

The authors declare that they have no conflict of interest. Financial or otherwise, are declared by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Sousa, R.A.L., Harmer, A.R., Freitas, D.A. et al. An update on potential links between type 2 diabetes mellitus and Alzheimer’s disease. Mol Biol Rep 47, 6347–6356 (2020). https://doi.org/10.1007/s11033-020-05693-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05693-z

Keywords

Navigation