Skip to main content

Advertisement

Log in

Peripheral and Central Effects of Memantine in a Mixed Preclinical Mice Model of Obesity and Familial Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 04 May 2020

This article has been updated

Abstract

There is growing evidence that obesity associated with type 2 diabetes mellitus (T2DM) and aging are risk factors for the development of Alzheimer’s disease (AD). However, the molecular mechanisms through which obesity interacts with β-amyloid (Aβ) to promote cognitive decline remains poorly understood. Memantine (MEM), a N-methyl-d-aspartate receptor antagonist, is currently used for the treatment of AD. Nonetheless, few studies have reported its effects on genetic preclinical models of this neurodegenerative disease exacerbated with high-fat diet (HFD)-induced obesity. Therefore, the present research aims to elucidate the effects of MEM on familial AD HFD-induced insulin resistance and learning and memory impairment. Furthermore, it aspires to determine the possible underlying mechanisms that connect AD to T2DM. Wild type and APPswe/PS1dE9 mice were used in this study. The animals were fed with either chow or HFD until 6 months of age, and they were treated with MEM-supplemented water (30 mg/kg) during the last 12 weeks. Our study demonstrates that MEM improves the metabolic consequences produced by HFD in this model of familial AD. Behavioural assessments confirmed that the treatment also improves animals learning abilities and decreases memory loss. Moreover, MEM treatment improves brain insulin signalling upregulating AKT, as well as cyclic adenosine monophosphate response element binding (CREB) expression, and modulates the amyloidogenic pathway, which, in turn, reduced the accumulation of Aβ. Moreover, this drug increases the activation of molecules involved with insulin signalling in the liver, such as insulin receptor substrate 2 (IRS2), which is a key protein regulating hepatic resistance to insulin. These results provide new insight into the role of MEM not only in the occurrence of AD treatment, but also in its potential application on peripheral metabolic disorders where Aβ plays a key role, as is the case of T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 04 May 2020

    The original version of this article unfortunately contained mistake. The authors found that Fig.��4.B mistakenly displays an incorrect GAPDH image. The authors are truly regretful and apologize for the mistake.

References

  1. Masters CL, Bateman R, Blennow K, Rowe CC, Spearling RA, Cummings JL (2015) Alzheimer’s disease. Nat Rev Dis Primers 1:15056

    Article  PubMed  Google Scholar 

  2. Craft S (2012) Alzheimer disease: insulin resistance and AD: extending the translational path. Nat Rev Neurol 8(7):360–362. https://doi.org/10.1038/nrneurol.2012.112

    Article  PubMed  CAS  Google Scholar 

  3. Ritchie CW, Molinuevo JL, Truyen L, Satlin A, Van der Geyten S, Lovestone S (2016) Development of interventions for the secondary prevention of Alzheimer’s dementia: the European Prevention of Alzheimer’s Dementia (EPAD) project. Lancet Psychiatry 3(2):179–186. https://doi.org/10.1016/S2215-0366(15)00454-X

    Article  PubMed  Google Scholar 

  4. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344. https://doi.org/10.1056/NEJMra0909142

    Article  PubMed  CAS  Google Scholar 

  5. Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M (2010) Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9:702e716

    Article  Google Scholar 

  6. Selkoe DJ (2011) Resolving controversies on the path to Alzheimer’s therapeutics. Nat Med 17(9):1060–1065. https://doi.org/10.1038/nm.2460

    Article  PubMed  CAS  Google Scholar 

  7. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608. https://doi.org/10.15252/emmm.201606210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Viola KL, Klein WL (2015) Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 129(2):183–206. https://doi.org/10.1007/s00401-015-1386-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lipton SA (2004) Paradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders. J Alzheimers Dis 6:S61eS74

    Google Scholar 

  10. Danysz W, Parsons CG, Mobius HJ, Stoffler A, Quack G (2000) Neuroprotective and symptomatological action of memantine relevant for Alzheimer’s disease—a unified glutamatergic hypothesis on the mechanism of action. Neurotox Res 2(2–3):85–97. https://doi.org/10.1007/BF03033787

    Article  PubMed  CAS  Google Scholar 

  11. Alley GM, Bailey JA, Chen D, Ray B, Puli LK, Tanila H, Banerjee PK, Lahiri DK (2010) Memantine lowers amyloid-beta peptide levels in neuronal cultures and in APP/PS1 transgenic mice. J Neurosci Res 88(1):143–154. https://doi.org/10.1002/jnr.22172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ito K, Tatebe T, Suzuki K, Hirayama T, Hayakawa M, Kubo H, Tomita T, Makino M (2017) Memantine reduces the production of amyloid-β peptides through modulation of amyloid precursor protein trafficking. Eur J Pharmacol 798:16–25. https://doi.org/10.1016/j.ejphar.2017.02.001

    Article  PubMed  CAS  Google Scholar 

  13. Accardi G, Caruso C, Colonna-Romano G, Camarda C, Monastero R, Candore G (2012) Can Alzheimer disease be a form of type 3 diabetes? Rejuvenation Res 15(2):217–221. https://doi.org/10.1089/rej.2011.1289

    Article  PubMed  CAS  Google Scholar 

  14. Bedse G, Di Domenico F, Serviddio G, Cassano T (2015) Aberrant insulin signaling in Alzheimer’s disease: current knowledge. Front Neurosci 9:204. https://doi.org/10.3389/fnins.2015.00204

    Article  PubMed  PubMed Central  Google Scholar 

  15. Clarke JR, Lyra E Silva NM, Figueiredo CP, Frozza RL, Ledo JH, Beckman D, Katashima CK, Razolli D et al (2015) Alzheimer-associated Aβ oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Mol Med 7(2):190–210. https://doi.org/10.15252/emmm.201404183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. De Felice FG, Benedict CA (2015) Key role of insulin receptors in memory. Diabetes 64(11):3653–3655. https://doi.org/10.2337/dbi15-0011

    Article  PubMed  CAS  Google Scholar 

  17. De Felice FG, Lourenco MV, Ferreira ST (2014) How does brain insulin resistance develop in Alzheimer’s disease? Alzheimers Dement 10(1 Suppl):S26–S32. https://doi.org/10.1016/j.jalz.2013.12.004

    Article  PubMed  Google Scholar 

  18. De Felice FG, Ferreira ST (2014) Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer Disease. Diabetes 63(7):2262–2272. https://doi.org/10.2337/db13-1954

    Article  PubMed  Google Scholar 

  19. de la Monte SM, Wands JR (2005) Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimer Dis 7(1):45–61. https://doi.org/10.3233/JAD-2005-7106

    Article  Google Scholar 

  20. de la Monte SM (2017) Insulin resistance and neurodegeneration: progress towards the development of new therapeutics for Alzheimer’s disease. Drugs 77(1):47–65. https://doi.org/10.1007/s40265-016-0674-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. de la Monte SM (2012) Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 9(1):35–66. https://doi.org/10.2174/156720512799015037

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bahramian A, Rastegar K, Namavar MR, Moosavi M (2016) Insulin potentiates the therapeutic effect of memantine against central STZ-induced spatial learning and memory deficit. Behav Brain Res 311:247–254. https://doi.org/10.1016/j.bbr.2016.05.046

    Article  PubMed  CAS  Google Scholar 

  23. Wu J, Fu B, Lei H, Tang H, Wang Y (2016) Gender differences of peripheral plasma and liver metabolic profiling in APP/PS1 transgenic AD mice. Neuroscience 332:160–169. https://doi.org/10.1016/j.neuroscience.2016.06.049

    Article  PubMed  CAS  Google Scholar 

  24. Zhang Y, Zhou B, Deng B, Zhang F, Wu J, Wang Y, Le Y, Zhai Q (2013) Amyloid-β induces hepatic insulin resistance in vivo via JAK2. Diabetes 62(4):1159–1166. https://doi.org/10.2337/db12-0670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zhang Y, Zhou B, Zhang F, Wu J, Hu Y, Liu Y, Zhai Q (2012) Amyloid-β induces hepatic insulin resistance by activating JAK2/STAT3/SOCS-1 signaling pathway. Diabetes 61(6):1434–1443. https://doi.org/10.2337/db11-0499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Arrieta-Cruz I, Knight CM, Gutiérrez-Juárez R (2015) Acute exposure of the mediobasal hypothalamus to amyloid-β25-35 perturbs hepatic glucose metabolism. J Alzheimers Dis 46(4):843–848. https://doi.org/10.3233/JAD-131865

    Article  PubMed  CAS  Google Scholar 

  27. Arrieta-Cruz I, Gutiérrez-Juárez R (2016) The role of insulin resistance and glucose metabolism dysregulation in the development of Alzheimer’s disease. Rev Investig Clin 68(2):53–58

    CAS  Google Scholar 

  28. Petrov D, Pedrós I, Artiach G, Sureda FX, Barroso E, Pallàs M, Casadesús G, Beas-Zarate C et al High-fat diet-induced deregulation of hippocampal insulin signaling and mitochondrial homeostasis deficiencies contribute to Alzheimer disease pathology in rodents. Biochim Biophys Acta 1852:1687–1699

  29. Almeida AA, Campos DR, Bernasconia G, Calafatti S, Barros FAP, Eberlin MN, Meurer EC, Paris EG et al (2007) Determination of memantine in human plasma by liquid chromatography–electrospray tandem mass spectrometry: application to a bioequivalence study. J Chrom B 848:31–316

    Article  CAS  Google Scholar 

  30. Sánchez-López E, Ettcheto M, Egea MA, Espina M, Calpena AC, Folch J, Camins A, García ML (2017) New potential strategies for Alzheimer’s disease prevention: pegylated biodegradable dexibuprofen nanospheres administration to APPswe/PS1dE9. Nanomedicine 13(3):1171–1182. https://doi.org/10.1016/j.nano.2016.12.003

    Article  PubMed  CAS  Google Scholar 

  31. MG H, Ikeda R, Wada M, Kuroda N, Abdel-Wadood HM, Mohamed HA, Nakashima K (2013) Interaction study of acetylcholinesterase inhibitors on pharmacokinetics of memantine in rat plasma by HPLC-fluorescence method. Biomed Chromatogr 27:1685–1689

    Article  CAS  Google Scholar 

  32. Talbot K, Wang H, Kazi H, Han L, Bakshi KP, Stucky A et al (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF1 resistance, IRS1 dysregulation, and cognitive decline. J Clin Invest 122(4):1316–1338. https://doi.org/10.1172/JCI59903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Biessels GJ, Reagan LP (2015) Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci 16(11):660–671. https://doi.org/10.1038/nrn4019

    Article  PubMed  CAS  Google Scholar 

  34. Schwartz MW, Porte D Jr (2005) Diabetes, obesity, and the brain. Science 307(5708):375–379. https://doi.org/10.1126/science.1104344

    Article  PubMed  CAS  Google Scholar 

  35. McNay EC, Recknagel AK (2011) Brain insulin signaling a key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes. Neurobiol Learn Mem 96(3):432–442. https://doi.org/10.1016/j.nlm.2011.08.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Plucińska K, Dekeryte R, Koss D, Shearer K, Mody N, Whitfield PD, Doherty MK, Mingarelli M et al (2016) Neuronal human BACE1 knockin induces systemic diabetes in mice. Diabetologia 59(7):1513–1523. https://doi.org/10.1007/s00125-016-3960-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Schiöth HB, Craft S, Brooks SK, Frey WH, Benedict C (2011) Brain insulin signaling and Alzheimer’s disease: current evidence and future direction. Mol Neurobiol 46(1):4–10. https://doi.org/10.1007/s12035-011-8229-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lechin F, van der Dijs B, Pardey-Maldonado B, Rivera JE, Lechin ME, Baez S (2009) Amantadine reduces glucagon and enhances insulin secretion throughout the oral glucosetolerance test: central plus peripheral nervous system mechanisms. Diab Metab Syndr Obes 2:203–213

    Article  CAS  Google Scholar 

  39. Marquard J, Otter S, Welters A, Stirban A, Fischer A, Eglinger J, Herebian D, Kletke O et al (2015) Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment. Nat Med 21:363–372

    Article  PubMed  CAS  Google Scholar 

  40. Marquard J, Stirban A, Schliess F, Sievers F, Welters A, Otter S, Fischer A, Wnendt S et al (2016) Effects of dextromethorphan as add-on to sitagliptin on blood glucose and serum insulin concentrations in individuals with type 2 diabetes mellitus: a randomized, placebo-controlled, double-blinded, multiple crossover, single-dose clinical trial. Diabetes Obes Metab 18:100–103

    Article  PubMed  CAS  Google Scholar 

  41. Welters A, Lammert E, Mayatepek E, Meissner T (2017) Need for better diabetes treatment: the therapeutic potential of NMDA receptor antagonists. Klin Padiatr 229(1):14–20. https://doi.org/10.1055/s-0042-117831

    Article  PubMed  CAS  Google Scholar 

  42. Wollheim CB, Maechler P (2015) Beta cell glutamate receptor antagonists: novel oral antidiabetic drugs? Nat Med 21(4):310–311. https://doi.org/10.1038/nm.3835

    Article  PubMed  CAS  Google Scholar 

  43. Morris JK, Honea RA, Vidoni ED, Swerdlow RH, Burns JM (2014) Is Alzheimer’s disease a systemic disease? Biochim Biophys Acta 1842(9):1340–1349. https://doi.org/10.1016/j.bbadis.2014.04.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wang J, Gu BJ, Masters CL, Wang YJ (2017) A systemic view of Alzheimer disease—insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol 13(10):612–623. https://doi.org/10.1038/nrneurol.2017.111

    Article  PubMed  CAS  Google Scholar 

  45. Troncone L, Luciani M, Coggins M, Wilker EH, Ho CY, Codispoti KE, Frosch MP, Kayed R et al (2016) Aβ amyloid pathology affects the hearts of patients with Alzheimer’s disease: Mind the Heart. J Am Coll Cardiol 68(22):2395–2407. https://doi.org/10.1016/j.jacc.2016.08.073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Liu Y-H, Wang Y-R, Xiang Y, Zhou H-D, Brian Giunta NB, Mañucat-Tan, Tan J, Zhou X-F et al (2015) Clearance of amyloid-beta in Alzheimer’s disease: shifting the action site from center to periphery. Mol Neurobiol 51:1–7

    Article  PubMed  CAS  Google Scholar 

  47. Desai GS, Zheng C, Geetha T, Mathews ST, White BD, Huggins KW, Zizza CA, Broderick TL et al (2014) The pancreas-brain axis: insight into disrupted mechanisms associating type 2 diabetes and Alzheimer’s disease. J Alzheimers Dis 42(2):347–356. https://doi.org/10.3233/JAD-140018

    Article  PubMed  CAS  Google Scholar 

  48. Macklin L, Griffith CM, Cai Y, Rose GM, Yan XX, Patrylo PR (2017) Glucose tolerance and insulin sensitivity are impaired in APP/PS1 transgenic mice prior to amyloid plaque pathogenesis and cognitive decline. Exp Gerontol 88:9–18. https://doi.org/10.1016/j.exger.2016.12.019

    Article  PubMed  CAS  Google Scholar 

  49. Valverde AM, González-Rodríguez A (2011) IRS2 and PTP1B: two opposite modulators of hepatic insulin signalling. Arch Physiol Biochem 117(3):105–115. https://doi.org/10.3109/13813455.2011.557386

    Article  PubMed  CAS  Google Scholar 

  50. Lavin DP, White MF, Brazil DP (2016) IRS proteins and diabetic complications. Diabetologia 59(11):2280–2291. https://doi.org/10.1007/s00125-016-4072-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Rajasekar N, Nath C, Hanif K, Shukla R (2016) Inhibitory effect of memantine on streptozotocin-induced insulin receptor dysfunction, neuroinflammation, amyloidogenesis, and neurotrophic factor decline in astrocytes. Mol Neurobiol 53(10):6730–6744. https://doi.org/10.1007/s12035-015-9576-5

    Article  PubMed  CAS  Google Scholar 

  52. Roshanravan H, Kim EY, Dryer SE (2016) NMDA receptors as potential therapeutic targets in diabetic nephropathy: increased renal NMDA receptor subunit expression in Akita mice and reduced nephropathy following sustained treatment with memantine or MK-801. Diabetes 65(10):3139–3150. https://doi.org/10.2337/db16-0209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. White MF (2014) IRS2 integrates insulin/IGF1 signalling with metabolism, neurodegeneration and longevity. Diabetes Obes Metab 16(Suppl 1):4–15. https://doi.org/10.1111/dom.12347

    Article  PubMed  CAS  Google Scholar 

  54. Baquedano E, Burgos-Ramos E, Canelles S, González-Rodríguez A, Chowen JA, Argente J, Barrios V, Valverde AM et al (2016) Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model. Dis Model Mech 9(5):573–583. https://doi.org/10.1242/dmm.023515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Henry Cabrera , acknowledges the research fellowship from Senescyt (Ecuador).

Funding

This work was supported by the Spanish Ministry of Science and Innovation SAF2017-84283-R to AC, SAF2015-64146-R to MVC, PI2016/01, CB06/05/0024 (CIBERNED), CB07/08/003 (CIBERDEM), the European Regional Development Founds and the MAT 2014-59134-R project. Research team from UB and URV belongs to 2014SGR-525 from Generalitat de Catalunya. ESL and MLG belong to 2014SGR-1023 and the second author, ESL, acknowledges the Ph.D. scholarship FPI-MICINN (BES-2012-026083). GC acknowledges The National Institutes of Health (1R15AG050292-01A1).

Author information

Authors and Affiliations

Authors

Contributions

All the authors had directly participated on the execution and planning of the manuscript.

Corresponding author

Correspondence to Antoni Camins.

Ethics declarations

Mice were treated in accordance with the European Community Council Directive 86/609/EEC and the procedures established by the Department d’Agricultura, Ramaderia i Pesca of the Generalitat de Catalunya.

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Jaume Folch and Antoni Camins are senior co-authors.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ettcheto, M., Sánchez-López, E., Gómez-Mínguez, Y. et al. Peripheral and Central Effects of Memantine in a Mixed Preclinical Mice Model of Obesity and Familial Alzheimer’s Disease. Mol Neurobiol 55, 7327–7339 (2018). https://doi.org/10.1007/s12035-018-0868-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0868-4

Keywords

Navigation