Skip to main content
Log in

Effect of a Nanodisperse Graphite on the Viscoelastic Properties of Polyvinyl Chloride

  • Published:
Mechanics of Composite Materials Aims and scope

In the absence of segregation of nanodisperse graphite particles, obtained by electrolysis as a new filler of polyvinyl chloride (PVC), the viscoelastic phenomena dependent on the structural changes of a composite are investigated. The shear modulus and the volume compressibility caused by deviations of elements of the structure from the quasi-equilibrium state under the action of ultrasonic vibrations (ω = 0.4·106 0.4 · 10 s–1) are calculated at filler concentrations 0 ≤ φ ≤ 10.0 vol.% and temperatures 298 K ≤ T ≤ (Tg + 10) K. It is shown that the volume density of internal energy depends on the expectation time for the transition of structural elements through the energy barrier, the dynamic viscosity of the material, and temperature. The results of calculations serve as the basis for producing PVC systems with controllable of properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. H. R. and M. Salehi, “Experimental study on the mechanical, creep, and viscoelastic behavior of TiO2/glass/epoxy hybrid nanocomposites,” Mech. Compos. Mater., 52, No. 5, 623-636 (2016).

    Article  Google Scholar 

  2. V. V. Zuev, S. V. Kostromin, and A. V. Shlykov, “ The effect of fullerene fillers on the mechanical properties of polymer nanocomposites,” Mech. Compos. Mater., 46, No. 2, 147-154 (2010).

    Article  Google Scholar 

  3. B. B. Kolupaev, “Study on the viscoelastic properties of metal-filler PVC on the basis of the potential of inter- and intramolecular interaction,” Inzh.-Fiz. Zhurn., 80, No.1, 178-185 (2007).

    Google Scholar 

  4. M. M. Shokri and R. Rafiee, “A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites,” Mech. Compos. Mater., 46, No. 2, 155-172 (2010).

    Article  Google Scholar 

  5. B. B. Кolupaev, V. V. Klepko, and E. V. Lebedev, “The relaxation processes of a nanofilled PVC in sound range frequency,” Acoustic Bulletin, 15, No. 2,. 43-48 (2012).

    Google Scholar 

  6. S. K. Nechaev, “Problems of probalistic topology: statistics of nodes and noncommutative random walk,” Ispekhi Fiz. Nauk, 168, No. 4, 369-405 (1998).

    Article  Google Scholar 

  7. A. Dixit and Harlal Singh Mali, “Modeling techniques for predicting the mechanical properties of woven-fabric textile composites,” Mech. Compos. Mater., 49, No. 1, 3-30 (2013).

    Article  Google Scholar 

  8. V. F. Kuropatenko, “Model of a multicomponent medium,” Dokl. RAN, 403, No. 6, 761-763 (2005).

    Google Scholar 

  9. S. Ya. Frenkel, I. M. Tsigel’nyi, and B. S. Kolupaev, Molecular Cybernetics [in Russian], L., Svit (1990).

  10. G. M. Bartenev and S. Ya. Frenkel, Polymer Physics [in Russian], L., Khimia (1990).

  11. B. S. Kolupaev, Relaxation and Thermal Properties of Filled Polymer Systems [in Russian], eds. S. Ya. Frenkel, L., LGU (1980).

  12. M. I. Ojovan, “Thermodynamic parameters of bonds in glassy materials from viscosity-temperature relationships,” J. Phys: Condensed Matter., 19, No. 41, 41-51 (2007).

    Google Scholar 

  13. Patent No. 92078 Ukraine, IPC C22B19/00, C01G9/00. Method of electrolytic preparation of fine zinc oxide / Yu. P. Lavorik, B. D. Nechiporuk, M. Yu. Novoselytsky, B. P. Rudik, V. V. Filonenko, O. V. Parasyuk. No. 200812571; stated on Oct. 27, 2008; publ. Feb. 25, 2009, Bull. No. 4.

  14. A. L. Volynskii, Structural Self-Organization of Amorphous Polymers [in Russian], M., Fizmatlit (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Levchuk.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 54, No. 3, pp. 489-500 , May-June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolupaev, B.B., Kolupaev, B.S., Levchuk, V.V. et al. Effect of a Nanodisperse Graphite on the Viscoelastic Properties of Polyvinyl Chloride. Mech Compos Mater 54, 333–340 (2018). https://doi.org/10.1007/s11029-018-9743-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-018-9743-7

Keywords

Navigation