Skip to main content

Advertisement

Log in

Roles of extracellular vesicles on macrophages in inflammatory bone diseases

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Inflammatory bone disease is a general term for a series of diseases caused by chronic inflammation, which leads to the destruction of bone homeostasis, that is, the osteolytic activity of osteoclasts increases, and the osteogenic activity of osteoblasts decreases, leading to osteolysis. Macrophages are innate immune cell with plasticity, and their polarization is related to inflammatory bone diseases. The dynamic balance of macrophages between the M1 phenotype and the M2 phenotype affects the occurrence and development of diseases. In recent years, an increasing number of studies have shown that extracellular vesicles existing in the extracellular environment can act on macrophages, affecting the progress of inflammatory diseases. This process is realized by influencing the physiological activity or functional activity of macrophages, inducing macrophages to secrete cytokines, and playing an anti-inflammatory or pro-inflammatory role. In addition, by modifying and editing extracellular vesicles, the potential of targeting macrophages can be used to provide new ideas for developing new drug carriers for inflammatory bone diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Shao H, Im H, Castro CM et al (2018) New technologies for analysis of extracellular vesicles. Chem Rev 118:1917–1950. https://doi.org/10.1021/acs.chemrev.7b00534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wiklander OPB, Brennan MÁ, Lötvall J et al (2019) Advances in therapeutic applications of extracellular vesicles. Sci Transl Med 11:eaav8521. https://doi.org/10.1126/scitranslmed.aav8521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Elsharkasy OM, Nordin JZ, Hagey DW et al (2020) Extracellular vesicles as drug delivery systems: why and how? Adv Drug Deliv Rev 159:332–343. https://doi.org/10.1016/j.addr.2020.04.004

    Article  CAS  PubMed  Google Scholar 

  4. Hu Y, Wang Y, Chen T et al (2021) Exosome: function and application in inflammatory bone diseases. Oxid Med Cell Longev 2021:1–17. https://doi.org/10.1155/2021/6324912

    Article  CAS  Google Scholar 

  5. Michalski MN, McCauley LK (2017) Macrophages and skeletal health. Pharmacol Ther 174:43–54. https://doi.org/10.1016/j.pharmthera.2017.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Horwood NJ (2016) Macrophage polarization and bone formation: a review. Clinic Rev Allerg Immunol 51:79–86. https://doi.org/10.1007/s12016-015-8519-2

    Article  CAS  Google Scholar 

  7. Wang J, Huang R, Xu Q et al (2020) Mesenchymal stem cell-derived extracellular vesicles alleviate acute lung injury via transfer of miR-27a-3p. Critical Care Medicine. https://doi.org/10.1097/CCM.0000000000004315

    Article  PubMed  Google Scholar 

  8. Kooijmans SAA, de Jong OG, Schiffelers RM (2021) Exploring interactions between extracellular vesicles and cells for innovative drug delivery system design. Adv Drug Deliv Rev 173:252–278. https://doi.org/10.1016/j.addr.2021.03.017

    Article  CAS  PubMed  Google Scholar 

  9. Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367:eaau6977. https://doi.org/10.1126/science.aau6977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines Journal of Extracellular Vesicles 7(1) 1535750. https://doi.org/10.1080/20013078.2018.1535750

  11. Fei, Teng Martin, Fussenegger (2021) Shedding Light on Extracellular Vesicle Biogenesis and Bioengineering Advanced Science 8(1) 2003505. https://doi.org/10.1002/advs.v8.110.1002/advs.202003505

  12. Teng F, Fussenegger M (2021) Shedding light on extracellular vesicle biogenesis and bioengineering. Adv Sci 8:2003505. https://doi.org/10.1002/advs.202003505

    Article  CAS  Google Scholar 

  13. Cabral J, Ryan AE, Griffin MD, Ritter T (2018) Extracellular vesicles as modulators of wound healing. Adv Drug Deliv Rev 129:394–406. https://doi.org/10.1016/j.addr.2018.01.018

    Article  CAS  PubMed  Google Scholar 

  14. Cocozza F, Grisard E, Martin-Jaular L et al (2020) SnapShot: extracellular Vesicles. Cell 182:262-262.e1. https://doi.org/10.1016/j.cell.2020.04.054

    Article  CAS  PubMed  Google Scholar 

  15. Tkach M, Théry C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164:1226–1232. https://doi.org/10.1016/j.cell.2016.01.043

    Article  CAS  PubMed  Google Scholar 

  16. Théry C (2015) Diagnosis by extracellular vesicles. Nature 523:161–162. https://doi.org/10.1038/nature14626

    Article  CAS  PubMed  Google Scholar 

  17. Lai J, Huang C, Guo Y, Rao L (2022) Engineered extracellular vesicles and their mimics in cardiovascular diseases. J Control Release 347:27–43. https://doi.org/10.1016/j.jconrel.2022.04.046

    Article  CAS  PubMed  Google Scholar 

  18. Martinez Escudé, de Castilla P, Tong L, Huang C et al (2021) Extracellular vesicles as a drug delivery system: a systematic review of preclinical studies. Adv Drug Deliv Rev 175:113801. https://doi.org/10.1016/j.addr.2021.05.011

    Article  CAS  Google Scholar 

  19. Le Saux S, Aubert-Pouëssel A, Mohamed KE et al (2021) Interest of extracellular vesicles in regards to lipid nanoparticle based systems for intracellular protein delivery. Adv Drug Deliv Rev 176:113837. https://doi.org/10.1016/j.addr.2021.113837

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Zhang H, Gu J et al (2021) Engineered extracellular vesicles for cancer therapy. Adv Mater 33:2005709. https://doi.org/10.1002/adma.202005709

    Article  CAS  Google Scholar 

  21. Wynn TA, Vannella KM (2016) Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44:450–462. https://doi.org/10.1016/j.immuni.2016.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Martin KE, García AJ (2021) Macrophage phenotypes in tissue repair and the foreign body response: implications for biomaterial-based regenerative medicine strategies. Acta Biomater 133:4–16. https://doi.org/10.1016/j.actbio.2021.03.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schlundt C, Fischer H, Bucher CH et al (2021) The multifaceted roles of macrophages in bone regeneration: a story of polarization, activation and time. Acta Biomater 133:46–57. https://doi.org/10.1016/j.actbio.2021.04.052

    Article  CAS  PubMed  Google Scholar 

  24. Chao, Liu Dewei, Chu Kourosh, Kalantar‐Zadeh Jacob, George Howard A., Young Guozhen, Liu (2021) Cytokines: From Clinical Significance to Quantification Advanced Science 8(15) 2004433-10.1002/advs.v8.15 10.1002/advs.202004433

  25. Jia Y-C, Ding Y-X, Mei W-T et al (2021) Extracellular vesicles and pancreatitis: mechanisms, status and perspectives. Int J Biol Sci 17:549–561. https://doi.org/10.7150/ijbs.54858

    Article  PubMed  PubMed Central  Google Scholar 

  26. Basu Mallik S, Jayashree BS, Shenoy RR (2018) Epigenetic modulation of macrophage polarization- perspectives in diabetic wounds. J Diabetes Complicat 32:524–530. https://doi.org/10.1016/j.jdiacomp.2018.01.015

    Article  Google Scholar 

  27. Schmidt-Bleek K, Schell H, Schulz N et al (2012) Inflammatory phase of bone healing initiates the regenerative healing cascade. Cell Tissue Res 347:567–573. https://doi.org/10.1007/s00441-011-1205-7

    Article  CAS  PubMed  Google Scholar 

  28. Ge X, Meng Q, Wei L et al (2021) Myocardial ischemia-reperfusion induced cardiac extracellular vesicles harbour proinflammatory features and aggravate heart injury. J Extracell Vesicles. https://doi.org/10.1002/jev2.12072

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cai M, Shi Y, Zheng T et al (2020) Mammary epithelial cell derived exosomal MiR-221 mediates M1 macrophage polarization via SOCS1/STATs to promote inflammatory response. International Immunopharmacology 83:106493. https://doi.org/10.1016/j.intimp.2020.106493

    Article  CAS  PubMed  Google Scholar 

  30. Lv L-L, Feng Y, Wu M et al (2020) Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury. Cell Death Differ 27:210–226. https://doi.org/10.1038/s41418-019-0349-y

    Article  CAS  PubMed  Google Scholar 

  31. Pan Y, Hui X, Hoo RLC et al (2019) Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Investig 129:834–849. https://doi.org/10.1172/JCI123069

    Article  PubMed  PubMed Central  Google Scholar 

  32. Louiselle AE, Niemiec SM, Zgheib C, Liechty KW (2021) Macrophage polarization and diabetic wound healing. Transl Res 236:109–116. https://doi.org/10.1016/j.trsl.2021.05.006

    Article  CAS  PubMed  Google Scholar 

  33. Ma W, Zhang W, Cui B et al (2021) Functional delivery of lncRNA TUG1 by endothelial progenitor cells derived extracellular vesicles confers anti-inflammatory macrophage polarization in sepsis via impairing miR-9-5p-targeted SIRT1 inhibition. Cell Death Dis 12:1056. https://doi.org/10.1038/s41419-021-04117-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kang M, Huang C-C, Gajendrareddy P et al (2022) Extracellular vesicles from TNFα Preconditioned MSCs: effects on Immunomodulation and bone regeneration. Front Immunol 13:878194. https://doi.org/10.3389/fimmu.2022.878194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ye Q, Xu H, Liu S et al (2022) Apoptotic extracellular vesicles alleviate Pg-LPS induced inflammatory responses of macrophages via AMPK/SIRT1/NF-κB pathway and inhibit osteoclast formation. J Periodontol 93:1738–1751. https://doi.org/10.1002/JPER.21-0657

    Article  CAS  PubMed  Google Scholar 

  36. Ning H, Chen H, Deng J et al (2021) Exosomes secreted by FNDC5-BMMSCs protect myocardial infarction by anti-inflammation and macrophage polarization via NF-κB signaling pathway and Nrf2/HO-1 axis. Stem Cell Res Ther 12:519. https://doi.org/10.1186/s13287-021-02591-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zheng J, Kong Y, Hu X et al (2020) MicroRNA-enriched small extracellular vesicles possess odonto-immunomodulatory properties for modulating the immune response of macrophages and promoting odontogenesis. Stem Cell Res Ther 11:517. https://doi.org/10.1186/s13287-020-02039-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dalirfardouei R, Jamialahmadi K, Jafarian AH, Mahdipour E (2019) Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model. J Tissue Eng Regen Med 13:555–568. https://doi.org/10.1002/term.2799

    Article  CAS  PubMed  Google Scholar 

  39. Woo CH, Kim HK, Jung GY et al (2020) Small extracellular vesicles from human adipose-derived stem cells attenuate cartilage degeneration. J Extracell Vesicles 9:1735249. https://doi.org/10.1080/20013078.2020.1735249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao H, Shang Q, Pan Z et al (2018) Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue. Diabetes 67:235–247. https://doi.org/10.2337/db17-0356

    Article  CAS  PubMed  Google Scholar 

  41. Liu J, Qiu X, Lv Y et al (2020) Apoptotic bodies derived from mesenchymal stem cells promote cutaneous wound healing via regulating the functions of macrophages. Stem Cell Res Ther 11:507. https://doi.org/10.1186/s13287-020-02014-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li J, Wei C, Yang Y et al (2022) Apoptotic bodies extracted from adipose mesenchymal stem cells carry microRNA-21–5p to induce M2 polarization of macrophages and augment skin wound healing by targeting KLF6. Burns 48:1893–1908. https://doi.org/10.1016/j.burns.2021.12.010

    Article  PubMed  Google Scholar 

  43. Park J, Kim S, Lim H et al (2019) Therapeutic effects of human mesenchymal stem cell microvesicles in an ex vivo perfused human lung injured with severe E. coli pneumonia. Thorax 74:43–50. https://doi.org/10.1136/thoraxjnl-2018-211576

    Article  PubMed  Google Scholar 

  44. Lo Sicco C, Reverberi D, Balbi C et al (2017) Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Transl Med 6:1018–1028. https://doi.org/10.1002/sctm.16-0363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Willis GR, Fernandez-Gonzalez A, Anastas J et al (2018) Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med 197:104–116. https://doi.org/10.1164/rccm.201705-0925OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yuana Y, Sturk A, Nieuwland R (2013) Extracellular vesicles in physiological and pathological conditions. Blood Rev 27:31–39. https://doi.org/10.1016/j.blre.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  47. Mayadas TN, Cullere X, Lowell CA (2014) The multifaceted functions of neutrophils. Annu Rev Pathol Mech Dis 9:181–218. https://doi.org/10.1146/annurev-pathol-020712-164023

    Article  CAS  Google Scholar 

  48. Eken C, Gasser O, Zenhaeusern G et al (2008) Polymorphonuclear Neutrophil-derived ectosomes interfere with the maturation of monocyte-derived dendritic cells. J Immunol 180:817–824. https://doi.org/10.4049/jimmunol.180.2.817

    Article  CAS  PubMed  Google Scholar 

  49. Gasser O, Schifferli JA (2004) Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood 104:2543–2548. https://doi.org/10.1182/blood-2004-01-0361

    Article  CAS  PubMed  Google Scholar 

  50. Eken C, Martin PJ, Sadallah S et al (2010) Ectosomes released by polymorphonuclear neutrophils induce a MerTK-dependent Anti-inflammatory pathway in macrophages. J Biol Chem 285:39914–39921. https://doi.org/10.1074/jbc.M110.126748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cheng L, Wang Y, Huang L (2017) Exosomes from M1-polarized macrophages potentiate the cancer vaccine by creating a pro-inflammatory microenvironment in the lymph node. Mol Ther 25:1665–1675. https://doi.org/10.1016/j.ymthe.2017.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tang D, Cao F, Yan C et al (2022) Extracellular vesicle/macrophage axis: potential targets for inflammatory disease intervention. Front Immunol 13:705472. https://doi.org/10.3389/fimmu.2022.705472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Deng H, Wu L, Liu M et al (2020) Bone marrow mesenchymal stem cell-derived exosomes attenuate LPS-induced ARDS by modulating macrophage polarization through inhibiting glycolysis in macrophages. Shock 54:828–843. https://doi.org/10.1097/SHK.0000000000001549

    Article  CAS  PubMed  Google Scholar 

  54. Deng H, Zhu L, Zhang Y et al (2022) Differential lung protective capacity of exosomes derived from human adipose tissue, bone marrow, and umbilical cord mesenchymal stem cells in sepsis-induced acute lung injury. Oxid Med Cell Longev 2022:1–15. https://doi.org/10.1155/2022/7837837

    Article  CAS  Google Scholar 

  55. Morrison TJ, Jackson MV, Cunningham EK et al (2017) Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med 196:1275–1286. https://doi.org/10.1164/rccm.201701-0170OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xia L, Zhang C, Lv N et al (2022) AdMSC-derived exosomes alleviate acute lung injury via transferring mitochondrial component to improve homeostasis of alveolar macrophages. Theranostics 12:2928–2947. https://doi.org/10.7150/thno.69533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Phinney DG, Di Giuseppe M, Njah J et al (2015) Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun 6:8472. https://doi.org/10.1038/ncomms9472

    Article  CAS  PubMed  Google Scholar 

  58. Ravichandran KS (2011) Beginnings of a good apoptotic meal: the find-me and Eat-Me signaling pathways. Immunity 35:445–455. https://doi.org/10.1016/j.immuni.2011.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. de Couto G, Jaghatspanyan E, DeBerge M et al (2019) Mechanism of enhanced MerTK-dependent macrophage efferocytosis by extracellular vesicles. ATVB 39:2082–2096. https://doi.org/10.1161/ATVBAHA.119.313115

    Article  CAS  Google Scholar 

  60. Mentkowski KI, Mursleen A, Snitzer JD et al (2020) CDC-derived extracellular vesicles reprogram inflammatory macrophages to an arginase 1-dependent proangiogenic phenotype. Am J Physiol-Heart Circ Physiol 318:H1447–H1460. https://doi.org/10.1152/ajpheart.00155.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang M, Johnson-Stephenson TK, Wang W et al (2022) Mesenchymal stem cell-derived exosome-educated macrophages alleviate systemic lupus erythematosus by promoting efferocytosis and recruitment of IL-17+ regulatory T cell. Stem Cell Res Ther 13:484. https://doi.org/10.1186/s13287-022-03174-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tang D, Cao F, Yan C et al (2022) Acinar cell-derived extracellular vesicle MiRNA-183–5p aggravates acute pancreatitis by promoting m1 macrophage polarization through downregulation of FoxO1. Front Immunol 13:869207. https://doi.org/10.3389/fimmu.2022.869207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Patil M, Saheera S, Dubey PK et al (2021) Novel mechanisms of exosome-mediated phagocytosis of dead cells in injured heart. Circ Res 129:1006–1020. https://doi.org/10.1161/CIRCRESAHA.120.317900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zheng C, Sui B, Zhang X et al (2021) Apoptotic vesicles restore liver macrophage homeostasis to counteract type 2 diabetes. J Extracell Vesicles. https://doi.org/10.1002/jev2.12109

    Article  PubMed  PubMed Central  Google Scholar 

  65. Xu X, Lai Y, Hua Z-C (2019) Apoptosis and apoptotic body: disease message and therapeutic target potentials. Bioscience Reports 39:BSR20180992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu Y, Zhang Y, Dai L et al (2019) An apoptotic body-biomimic liposome in situ upregulates anti-inflammatory macrophages for stabilization of atherosclerotic plaques. J Control Release 316:236–249. https://doi.org/10.1016/j.jconrel.2019.10.043

    Article  CAS  PubMed  Google Scholar 

  67. Bao L, Dou G, Tian R et al (2022) Engineered neutrophil apoptotic bodies ameliorate myocardial infarction by promoting macrophage efferocytosis and inflammation resolution. Bioact Mater 9:183–197. https://doi.org/10.1016/j.bioactmat.2021.08.008

    Article  CAS  PubMed  Google Scholar 

  68. Zhou M, Li Y-J, Tang Y-C et al (2022) Apoptotic bodies for advanced drug delivery and therapy. J Control Release 351:394–406. https://doi.org/10.1016/j.jconrel.2022.09.045

    Article  CAS  PubMed  Google Scholar 

  69. Gao W-J, Liu J-X, Liu M-N et al (2021) Macrophage 3D migration: a potential therapeutic target for inflammation and deleterious progression in diseases. Pharmacol Rese 167:105563. https://doi.org/10.1016/j.phrs.2021.105563

    Article  CAS  Google Scholar 

  70. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737. https://doi.org/10.1038/nri3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xu X, Poulsen KL, Wu L et al (2022) Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Sig Transduct Target Ther 7:287. https://doi.org/10.1038/s41392-022-01119-3

    Article  Google Scholar 

  72. Chen L, Chen R, Kemper S et al (2018) Therapeutic effects of serum extracellular vesicles in liver fibrosis. J Extracell Vesicles 7:1461505. https://doi.org/10.1080/20013078.2018.1461505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liao C-Y, Song MJ, Gao Y et al (2018) Hepatocyte-derived lipotoxic extracellular vesicle sphingosine 1-phosphate induces macrophage chemotaxis. Front Immunol 9:2980. https://doi.org/10.3389/fimmu.2018.02980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guo Q, Furuta K, Lucien F et al (2019) Integrin β1-enriched extracellular vesicles mediate monocyte adhesion and promote liver inflammation in murine NASH. J Hepatol 71:1193–1205. https://doi.org/10.1016/j.jhep.2019.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chang Y-J, Li Y-S, Wu C-C et al (2019) Extracellular MicroRNA-92a mediates endothelial cell-macrophage communication. ATVB 39:2492–2504. https://doi.org/10.1161/ATVBAHA.119.312707

    Article  CAS  Google Scholar 

  76. Nguyen M-A, Karunakaran D, Geoffrion M et al (2018) Extracellular vesicles secreted by atherogenic macrophages transfer MicroRNA to inhibit cell migration. ATVB 38:49–63. https://doi.org/10.1161/ATVBAHA.117.309795

    Article  CAS  Google Scholar 

  77. Sun Y, Zhou Y, Shi Y et al (2021) Expression of miRNA-29 in pancreatic β cells promotes inflammation and diabetes via TRAF3. Cell Rep 34:108576. https://doi.org/10.1016/j.celrep.2020.108576

    Article  CAS  PubMed  Google Scholar 

  78. Bonjoch L, Casas V, Carrascal M, Closa D (2016) Involvement of exosomes in lung inflammation associated with experimental acute pancreatitis: exosomes in acute pancreatitis. J Pathol 240:235–245. https://doi.org/10.1002/path.4771

    Article  CAS  PubMed  Google Scholar 

  79. Zou X, Zhang G, Cheng Z et al (2014) Microvesicles derived from human Wharton’s Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1. Stem Cell Res Ther 5:40. https://doi.org/10.1186/scrt428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yu B, Shao H, Su C et al (2016) Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1. Sci Rep 6:34562. https://doi.org/10.1038/srep34562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shen B, Liu J, Zhang F et al (2016) CCR2 positive exosome released by mesenchymal stem cells suppresses macrophage functions and alleviates ischemia/reperfusion-induced renal injury. Stem Cells Int 2016:1–9. https://doi.org/10.1155/2016/1240301

    Article  CAS  Google Scholar 

  82. Li J, Xue H, Li T et al (2019) Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE−/- mice via miR-let7 mediated infiltration and polarization of M2 macrophage. Biochem Biophys Res Commun 510:565–572. https://doi.org/10.1016/j.bbrc.2019.02.005

    Article  CAS  PubMed  Google Scholar 

  83. Qiao S, Zhang W, Yin Y et al (2020) Extracellular vesicles derived from Krüppel-Like Factor 2-overexpressing endothelial cells attenuate myocardial ischemia-reperfusion injury by preventing Ly6C high monocyte recruitment. Theranostics 10:11562–11579. https://doi.org/10.7150/thno.45459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu M, Sun Y, Zhang Q (2018) Emerging role of extracellular vesicles in bone remodeling. J Dent Res 97:859–868. https://doi.org/10.1177/0022034518764411

    Article  CAS  PubMed  Google Scholar 

  85. Kim HY, Song M, Gho YS et al (2021) Extracellular vesicles derived from the periodontal pathogen Filifactor alocis induce systemic bone loss through Toll-like receptor 2. J Extracell Vesicles 10:e12157. https://doi.org/10.1002/jev2.12157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hajishengallis G (2015) Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol 15:30–44. https://doi.org/10.1038/nri3785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pan W, Wang Q, Chen Q (2019) The cytokine network involved in the host immune response to periodontitis. Int J Oral Sci 11:30. https://doi.org/10.1038/s41368-019-0064-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Preshaw PM, Alba AL, Herrera D et al (2012) Periodontitis and diabetes: a two-way relationship. Diabetologia 55:21–31. https://doi.org/10.1007/s00125-011-2342-y

    Article  CAS  PubMed  Google Scholar 

  89. Sanz M, Marco del Castillo A, Jepsen S et al (2020) Periodontitis and cardiovascular diseases: consensus report. J Clin Periodontol 47:268–288. https://doi.org/10.1111/jcpe.13189

    Article  PubMed  PubMed Central  Google Scholar 

  90. Naderi S, Merchant AT (2020) The association between periodontitis and cardiovascular disease: an update. Curr Atheroscler Rep 22:52. https://doi.org/10.1007/s11883-020-00878-0

    Article  PubMed  Google Scholar 

  91. Sadrameli M, Bathini P, Alberi L (2020) Linking mechanisms of periodontitis to Alzheimer’s disease. Curr Opin Neurol 33:230–238. https://doi.org/10.1097/WCO.0000000000000797

    Article  PubMed  Google Scholar 

  92. Pihlstrom BL, Michalowicz BS, Johnson NW (2005) Periodontal diseases. The Lancet 366:1809–1820. https://doi.org/10.1016/S0140-6736(05)67728-8

    Article  Google Scholar 

  93. Wang Z, Maruyama K, Sakisaka Y et al (2019) Cyclic stretch force induces periodontal ligament cells to secrete exosomes that suppress IL-1β production through the inhibition of the NF-κB signaling pathway in macrophages. Front Immunol 10:1310. https://doi.org/10.3389/fimmu.2019.01310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sima C (2000) Glogauer M (2013) Macrophage subsets and osteoimmunology: tuning of the immunological recognition and effector systems that maintain alveolar bone. Periodontol 63:80–101. https://doi.org/10.1111/prd.12032

    Article  Google Scholar 

  95. Kang H, Lee M-J, Park S, Lee M-S (2018) Lipopolysaccharide-preconditioned periodontal ligament stem cells induce M1 polarization of macrophages through extracellular vesicles. IJMS 19:3843. https://doi.org/10.3390/ijms19123843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xia Y, Zhou K, Sun M et al (2021) The miR-223-3p regulates pyroptosis through NLRP3-caspase 1-GSDMD signal axis in periodontitis. Inflammation 44:2531–2542. https://doi.org/10.1007/s10753-021-01522-y

    Article  CAS  PubMed  Google Scholar 

  97. Chen X, Wan Z, Yang L et al (2022) Exosomes derived from reparative M2-like macrophages prevent bone loss in murine periodontitis models via IL-10 mRNA. J Nanobiotechnol 20:110. https://doi.org/10.1186/s12951-022-01314-y

    Article  CAS  Google Scholar 

  98. Lin H, Chen H, Zhao X et al (2022) Advances of exosomes in periodontitis treatment. J Transl Med 20:279. https://doi.org/10.1186/s12967-022-03487-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li Y, Duan X, Chen Y et al (2022) Dental stem cell-derived extracellular vesicles as promising therapeutic agents in the treatment of diseases. Int J Oral Sci 14:2. https://doi.org/10.1038/s41368-021-00152-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Joswig A-J, Mitchell A, Cummings KJ et al (2017) Repeated intra-articular injection of allogeneic mesenchymal stem cells causes an adverse response compared to autologous cells in the equine model. Stem Cell Res Ther 8:42. https://doi.org/10.1186/s13287-017-0503-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lee AS, Tang C, Rao MS et al (2013) Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 19:998–1004. https://doi.org/10.1038/nm.3267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nakao Y, Fukuda T, Zhang Q et al (2021) Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater 122:306–324. https://doi.org/10.1016/j.actbio.2020.12.046

    Article  CAS  PubMed  Google Scholar 

  103. Wang R, Ji Q, Meng C et al (2020) Role of gingival mesenchymal stem cell exosomes in macrophage polarization under inflammatory conditions. Int Immunopharmacol 81:106030. https://doi.org/10.1016/j.intimp.2019.106030

    Article  CAS  PubMed  Google Scholar 

  104. Sun J, Wang Z, Liu P et al (2022) Exosomes derived from human gingival mesenchymal stem cells attenuate the inflammatory response in periodontal ligament stem cells. Front Chem 10:863364. https://doi.org/10.3389/fchem.2022.863364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang Y, Wang Z, Shi B et al (2021) Effect of gingival mesenchymal stem cell-derived exosomes on inflammatory macrophages in a high-lipid microenvironment. Int Immunopharmacol 94:107455. https://doi.org/10.1016/j.intimp.2021.107455

    Article  CAS  PubMed  Google Scholar 

  106. Huang Y, Liu Q, Liu L et al (2022) Lipopolysaccharide-preconditioned dental follicle stem cells derived small extracellular vesicles treating periodontitis via reactive oxygen species/mitogen-activated protein kinase signaling-mediated antioxidant effect. IJN 17:799–819. https://doi.org/10.2147/IJN.S350869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu L, Guo S, Shi W et al (2021) Bone marrow mesenchymal stem cell-derived small extracellular vesicles promote periodontal regeneration. Tissue Eng Part A 27:962–976. https://doi.org/10.1089/ten.tea.2020.0141

    Article  CAS  PubMed  Google Scholar 

  108. Chen Z, Bozec A, Ramming A, Schett G (2019) Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat Rev Rheumatol 15:9–17. https://doi.org/10.1038/s41584-018-0109-2

    Article  CAS  PubMed  Google Scholar 

  109. Tardito S, Martinelli G, Soldano S et al (2019) Macrophage M1/M2 polarization and rheumatoid arthritis: a systematic review. Autoimmun Rev 18:102397. https://doi.org/10.1016/j.autrev.2019.102397

    Article  CAS  PubMed  Google Scholar 

  110. Udalova IA, Mantovani A, Feldmann M (2016) Macrophage heterogeneity in the context of rheumatoid arthritis. Nat Rev Rheumatol 12:472–485. https://doi.org/10.1038/nrrheum.2016.91

    Article  CAS  PubMed  Google Scholar 

  111. Boutet M-A, Courties G, Nerviani A et al (2021) Novel insights into macrophage diversity in rheumatoid arthritis synovium. Autoimmun Rev 20:102758. https://doi.org/10.1016/j.autrev.2021.102758

    Article  CAS  PubMed  Google Scholar 

  112. Alghamdi M, Alamry SA, Bahlas SM et al (2022) Circulating extracellular vesicles and rheumatoid arthritis: a proteomic analysis. Cell Mol Life Sci 79:25. https://doi.org/10.1007/s00018-021-04020-4

    Article  CAS  Google Scholar 

  113. Withrow J, Murphy C, Liu Y et al (2016) Extracellular vesicles in the pathogenesis of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 18:286. https://doi.org/10.1186/s13075-016-1178-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cloutier N, Tan S, Boudreau LH et al (2013) The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med 5:235–249. https://doi.org/10.1002/emmm.201201846

    Article  CAS  PubMed  Google Scholar 

  115. Tran T-H, Mattheolabakis G, Aldawsari H, Amiji M (2015) Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases. Clin Immunol 160:46–58. https://doi.org/10.1016/j.clim.2015.03.021

    Article  CAS  PubMed  Google Scholar 

  116. Boilard E, Blanco P, Nigrovic PA (2012) Platelets: active players in the pathogenesis of arthritis and SLE. Nat Rev Rheumatol 8:534–542. https://doi.org/10.1038/nrrheum.2012.118

    Article  CAS  PubMed  Google Scholar 

  117. Austin-Williams S, Hussain MT, Oggero S, Norling LV (2021) Enhancing extracellular vesicles for therapeutic treatment of arthritic joints. Free Radical Biol Med 175:80–94. https://doi.org/10.1016/j.freeradbiomed.2021.08.235

    Article  CAS  Google Scholar 

  118. Ni Z, Zhou S, Li S et al (2020) Exosomes: roles and therapeutic potential in osteoarthritis. Bone Res 8:25. https://doi.org/10.1038/s41413-020-0100-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Domenis R, Zanutel R, Caponnetto F et al (2017) Characterization of the proinflammatory profile of synovial fluid-derived exosomes of patients with osteoarthritis. Mediators Inflamm 2017:1–11. https://doi.org/10.1155/2017/4814987

    Article  CAS  Google Scholar 

  120. Yang Y, Guo L, Wang Z et al (2021) Targeted silver nanoparticles for rheumatoid arthritis therapy via macrophage apoptosis and Re-polarization. Biomaterials 264:120390. https://doi.org/10.1016/j.biomaterials.2020.120390

    Article  CAS  PubMed  Google Scholar 

  121. Ni Z, Kuang L, Chen H et al (2019) The exosome-like vesicles from osteoarthritic chondrocyte enhanced mature IL-1β production of macrophages and aggravated synovitis in osteoarthritis. Cell Death Dis 10:522. https://doi.org/10.1038/s41419-019-1739-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rhys HI, Dell’Accio F, Pitzalis C et al (2018) Neutrophil microvesicles from healthy control and rheumatoid arthritis patients prevent the inflammatory activation of macrophages. EBioMedicine 29:60–69. https://doi.org/10.1016/j.ebiom.2018.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zheng L, Wang Y, Qiu P et al (2019) Primary chondrocyte exosomes mediate osteoarthritis progression by regulating mitochondrion and immune reactivity. Nanomedicine 14:3193–3212. https://doi.org/10.2217/nnm-2018-0498

    Article  CAS  PubMed  Google Scholar 

  124. Yang J-H, Liu F-X, Wang J-H et al (2020) Mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles: potential roles in rheumatic diseases. WJSC 12:688–705. https://doi.org/10.4252/wjsc.v12.i7.688

    Article  PubMed  PubMed Central  Google Scholar 

  125. Tofiño-Vian M, Guillén MI, Alcaraz MJ (2018) Extracellular vesicles: a new therapeutic strategy for joint conditions. Biochem Pharmacol 153:134–146. https://doi.org/10.1016/j.bcp.2018.02.004

    Article  CAS  PubMed  Google Scholar 

  126. Zhang S, Chuah SJ, Lai RC et al (2018) MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials 156:16–27. https://doi.org/10.1016/j.biomaterials.2017.11.028

    Article  CAS  PubMed  Google Scholar 

  127. Cosenza S, Ruiz M, Toupet K et al (2017) Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep 7:16214. https://doi.org/10.1038/s41598-017-15376-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Li K, Yan G, Huang H et al (2022) Anti-inflammatory and immunomodulatory effects of the extracellular vesicles derived from human umbilical cord mesenchymal stem cells on osteoarthritis via M2 macrophages. J Nanobiotechnol 20:38. https://doi.org/10.1186/s12951-021-01236-1

    Article  CAS  Google Scholar 

  129. Kim H, Back JH, Han G et al (2022) Extracellular vesicle-guided in situ reprogramming of synovial macrophages for the treatment of rheumatoid arthritis. Biomaterials 286:121578. https://doi.org/10.1016/j.biomaterials.2022.121578

    Article  CAS  PubMed  Google Scholar 

  130. Castegna A, Gissi R, Menga A et al (2020) Pharmacological targets of metabolism in disease: opportunities from macrophages. Pharmacol Ther 210:107521. https://doi.org/10.1016/j.pharmthera.2020.107521

    Article  CAS  PubMed  Google Scholar 

  131. He H, Ghosh S, Yang H (2017) Nanomedicines for dysfunctional macrophage-associated diseases. J Control Release 247:106–126. https://doi.org/10.1016/j.jconrel.2016.12.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lim GT, You DG, Han HS et al (2021) Bioorthogonally surface-edited extracellular vesicles based on metabolic glycoengineering for CD44-mediated targeting of inflammatory diseases. J Extracell Vesicles. https://doi.org/10.1002/jev2.12077

    Article  PubMed  PubMed Central  Google Scholar 

  133. Xu H, Jia S, Xu H (2019) Potential therapeutic applications of exosomes in different autoimmune diseases. Clin Immunol 205:116–124. https://doi.org/10.1016/j.clim.2019.06.006

    Article  CAS  PubMed  Google Scholar 

  134. Turpin D, Truchetet M-E, Faustin B et al (2016) Role of extracellular vesicles in autoimmune diseases. Autoimmun Rev 15:174–183. https://doi.org/10.1016/j.autrev.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  135. Yan F, Zhong Z, Wang Y et al (2020) Exosome-based biomimetic nanoparticles targeted to inflamed joints for enhanced treatment of rheumatoid arthritis. J Nanobiotechnol 18:115. https://doi.org/10.1186/s12951-020-00675-6

    Article  CAS  Google Scholar 

  136. Takenaka M, Yabuta A, Takahashi Y, Takakura Y (2021) Interleukin-4-carrying small extracellular vesicles with a high potential as anti-inflammatory therapeutics based on modulation of macrophage function. Biomaterials 278:121160. https://doi.org/10.1016/j.biomaterials.2021.121160

    Article  CAS  PubMed  Google Scholar 

  137. Li H, Feng Y, Zheng X et al (2022) M2-type exosomes nanoparticles for rheumatoid arthritis therapy via macrophage re-polarization. J Control Release 341:16–30. https://doi.org/10.1016/j.jconrel.2021.11.019

    Article  CAS  PubMed  Google Scholar 

  138. Zhang M, Hu W, Cai C et al (2022) Advanced application of stimuli-responsive drug delivery system for inflammatory arthritis treatment. Materi Today Bio 14:100223. https://doi.org/10.1016/j.mtbio.2022.100223

    Article  CAS  Google Scholar 

  139. Lew DP, Waldvogel FA (2004) Osteomyelitis. Lancet 364:369–379. https://doi.org/10.1016/S0140-6736(04)16727-5

    Article  CAS  PubMed  Google Scholar 

  140. Kavanagh N, Ryan EJ, Widaa A et al (2018) Staphylococcal osteomyelitis: disease progression, treatment challenges, and future directions. Clin Microbiol Rev 31:e00084-e117. https://doi.org/10.1128/CMR.00084-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rao N, Ziran BH, Lipsky BA (2011) Treating Osteomyelitis: antibiotics and Surgery. Plast Reconstr Surg 127:177S-187S. https://doi.org/10.1097/PRS.0b013e3182001f0f

    Article  CAS  PubMed  Google Scholar 

  142. Jahan N, Patton T, O’Keeffe M (2022) The influence of antibiotic resistance on innate immune responses to Staphylococcus aureus infection. Antibiotics 11:542. https://doi.org/10.3390/antibiotics11050542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen H, Zhang J, He Y et al (2022) Exploring the role of Staphylococcus aureus in inflammatory diseases. Toxins (Basel) 14:464. https://doi.org/10.3390/toxins14070464

    Article  CAS  PubMed  Google Scholar 

  144. Zaborowska M, Vazirisani F, Shah FA et al (2021) Immunomodulatory effects exerted by extracellular vesicles from Staphylococcus epidermidis and Staphylococcus aureus isolated from bone-anchored prostheses. Biomaterials 278:121158. https://doi.org/10.1016/j.biomaterials.2021.121158

    Article  CAS  PubMed  Google Scholar 

  145. Missiakas D, Winstel V (2021) Selective host cell death by Staphylococcus aureus: a strategy for bacterial persistence. Front Immunol 11:621733. https://doi.org/10.3389/fimmu.2020.621733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gimza BD, Cassat JE (2021) Mechanisms of antibiotic failure during Staphylococcus aureus osteomyelitis. Front Immunol 12:638085. https://doi.org/10.3389/fimmu.2021.638085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Rowe SE, Wagner NJ, Li L et al (2020) Reactive oxygen species induce antibiotic tolerance during systemic Staphylococcus aureus infection. Nat Microbiol 5:282–290. https://doi.org/10.1038/s41564-019-0627-y

    Article  CAS  PubMed  Google Scholar 

  148. Rowe SE, Beam JE, Conlon BP (2021) Recalcitrant Staphylococcus aureus infections: obstacles and solutions. Infect Immun 89:e00694-e720. https://doi.org/10.1128/IAI.00694-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yu K, Song L, Kang HP et al (2020) Recalcitrant methicillin-resistant Staphylococcus aureus infection of bone cells: Intracellular penetration and control strategies. Bone & Joint Research 9:49–59. https://doi.org/10.1302/2046-3758.92.BJR-2019-0131.R1

    Article  Google Scholar 

  150. Zelmer AR, Nelson R, Richter K, Atkins GJ (2022) Can intracellular Staphylococcus aureus in osteomyelitis be treated using current antibiotics? A systematic review and narrative synthesis. Bone Res 10:53. https://doi.org/10.1038/s41413-022-00227-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ma J, Jiang L, Liu G (2022) Cell membrane-coated nanoparticles for the treatment of bacterial infection. WIREs Nanomed Nanobiotechnol. https://doi.org/10.1002/wnan.1825

    Article  Google Scholar 

  152. Zhang Y, Liang R, Xu J et al (2017) Efficient induction of antimicrobial activity with vancomycin nanoparticle-loaded poly(trimethylene carbonate) localized drug delivery system. IJN 12:1201–1214. https://doi.org/10.2147/IJN.S127715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Trousil J, Dal N-JK, Fenaroli F et al (2022) Antibiotic-Loaded Amphiphilic Chitosan Nanoparticles Target Macrophages and Kill an Intracellular Pathogen. Small 18:2201853. https://doi.org/10.1002/smll.202201853

    Article  CAS  Google Scholar 

  154. Gao Y, Chen Y, Cao Y et al (2021) Potentials of nanotechnology in treatment of methicillin-resistant Staphylococcus aureus. Eur J Med Chem 213:113056. https://doi.org/10.1016/j.ejmech.2020.113056

    Article  CAS  PubMed  Google Scholar 

  155. Yang S, Han X, Yang Y et al (2018) Bacteria-Targeting Nanoparticles with Microenvironment-Responsive Antibiotic Release To Eliminate Intracellular Staphylococcus aureus and Associated Infection. ACS Appl Mater Interfaces 10:14299–14311. https://doi.org/10.1021/acsami.7b15678

    Article  CAS  PubMed  Google Scholar 

  156. Yang X, Shi G, Guo J et al (2018) Exosome-encapsulated antibiotic against intracellular infections of methicillin-resistant Staphylococcus aureus. IJN 13:8095–8104. https://doi.org/10.2147/IJN.S179380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yang X, Xie B, Peng H et al (2021) Eradicating intracellular MRSA via targeted delivery of lysostaphin and vancomycin with mannose-modified exosomes. J Control Release 329:454–467. https://doi.org/10.1016/j.jconrel.2020.11.045

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from Guangdong Science and Technology Department grant number2021A0505030079; the Key Project of Science and Technology of Liwan District, Guangzhou City (No. 2201006).

Author information

Authors and Affiliations

Authors

Contributions

YL has made substantial contributions to conception, design, draft, and revise the manuscript. ZW and SL were involved in drafting the manuscript and revising it critically for important intellectual content. JL, ZZ, YO, ZS, and DC gave final approval of the version to be published. LG and TL agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lvhua Guo or Tao Luo.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Wang, Z., Liu, S. et al. Roles of extracellular vesicles on macrophages in inflammatory bone diseases. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04809-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04809-w

Keywords

Navigation