Skip to main content

Advertisement

Log in

Circulating extracellular vesicles and rheumatoid arthritis: a proteomic analysis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Circulating extracellular vesicles (EVs) are membrane-bound nanoparticles secreted by most cells for intracellular communication and transportation of biomolecules. EVs carry proteins, lipids, nucleic acids, and receptors that are involved in human physiology and pathology. EV cargo is variable and highly related to the type and state of the cellular origin. Three subtypes of EVs have been identified: exosomes, microvesicles, and apoptotic bodies. Exosomes are the smallest and the most well-studied class of EVs that regulate different biological processes and participate in several diseases, such as cancers and autoimmune diseases. Proteomic analysis of exosomes succeeded in profiling numerous types of proteins involved in disease development and prognosis. In rheumatoid arthritis (RA), exosomes revealed a potential function in joint inflammation. These EVs possess a unique function, as they can transfer specific autoantigens and mediators between distant cells. Current proteomic data demonstrated that exosomes could provide beneficial effects against autoimmunity and exert an immunosuppressive action, particularly in RA. Based on these observations, effective therapeutic strategies have been developed for arthritis and other inflammatory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

All data are used within our report.

References

  1. Huang J, Xiong J, Yang L et al (2021) Cell-free exosome-laden scaffolds for tissue repair. Nanoscale 13(19):8740–8750. https://doi.org/10.1039/d1nr01314a

    Article  CAS  PubMed  Google Scholar 

  2. Rossello RA, Kohn DH (2009) Gap junction intercellular communication: a review of a potential platform to modulate craniofacial tissue engineering. J Biomed Mater Res B Appl Biomater 88(2):509–518

    PubMed  PubMed Central  Google Scholar 

  3. Finetti F, Cassioli C, Baldari CT (2017) Transcellular communication at the immunological synapse: a vesicular traffic-mediated mutual exchange. F1000Res 6:1880

    PubMed  PubMed Central  Google Scholar 

  4. Margolis L, Sadovsky Y (2019) The biology of extracellular vesicles: the known unknowns. PLoS Biol 17(7):e3000363

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13(3):269–288

    CAS  PubMed  Google Scholar 

  6. Johnstone RM, Adam M, Hammond JR et al (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262(19):9412–9420

    CAS  PubMed  Google Scholar 

  7. Pan BT, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33(3):967–978

    CAS  PubMed  Google Scholar 

  8. Stegmayr B, Ronquist G (1982) Promotive effect on human sperm progressive motility by prostasomes. Urol Res 10(5):253–257

    CAS  PubMed  Google Scholar 

  9. Dvorak HF, Quay SC, Orenstein NS et al (1981) Tumor shedding and coagulation. Science 212(4497):923–924

    CAS  PubMed  Google Scholar 

  10. Jan AT, Rahman S, Badierah R et al (2021) Expedition into exosome biology: a perspective of progress from discovery to therapeutic development. Cancers 13(5):1157

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Thery C, Witwer KW, Aikawa E et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750

    PubMed  PubMed Central  Google Scholar 

  12. Koniusz S, Andrzejewska A, Muraca M et al (2016) Extracellular vesicles in physiology, pathology, and therapy of the immune and central nervous system, with focus on extracellular vesicles derived from mesenchymal stem cells as therapeutic tools. Front Cell Neurosci 10:109

    PubMed  PubMed Central  Google Scholar 

  13. Badierah RA, Uversky VN, Redwan EM (2020) Dancing with Trojan horses: an interplay between the extracellular vesicles and viruses. J Biomol Struct Dynam 39(8):3034–3060

    Google Scholar 

  14. Shah R, Patel T, Freedman JE (2018) Circulating extracellular vesicles in human disease. N Engl J Med 379(10):958–966

    CAS  PubMed  Google Scholar 

  15. Andaloussi SEL, Mager I, Breakefield XO et al (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12(5):347–357

    Google Scholar 

  16. Jia S, Zocco D, Samuels ML et al (2014) Emerging technologies in extracellular vesicle-based molecular diagnostics. Expert Rev Mol Diagn 14(3):307–321

    CAS  PubMed  Google Scholar 

  17. Andaloussi SE, Mäger I, Breakefield XO et al (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12(5):347

    Google Scholar 

  18. Lener T, Gimona M, Aigner L et al (2015) Applying extracellular vesicles based therapeutics in clinical trials—an ISEV position paper. J Extracell Vesicles 4:30087

    PubMed  Google Scholar 

  19. Akers JC, Gonda D, Kim R et al (2013) Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol 113(1):1–11

    PubMed  PubMed Central  Google Scholar 

  20. Hauser P, Wang S, Didenko VV (2017) Apoptotic bodies: selective detection in extracellular vesicles. Methods Mol Biol 1554:193–200

    CAS  PubMed  Google Scholar 

  21. Schwartz YS, Dolganova OM, Rudina MI et al (2018) Influence of apoptotic bodies and apoptotic microvesicles on no production in macrophages. Bull Exp Biol Med 165(4):453–456

    CAS  PubMed  Google Scholar 

  22. Ludwig A-K, Giebel B (2012) Exosomes: small vesicles participating in intercellular communication. Int J Biochem Cell Biol 44(1):11–15

    CAS  PubMed  Google Scholar 

  23. Harding C, Heuser J, Stahl P (1984) Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur J Cell Biol 35(2):256–263

    CAS  PubMed  Google Scholar 

  24. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Meehan B, Rak J, Di Vizio D (2016) Oncosomes—large and small: what are they, where they came from? J Extracell Vesicles 5:33109

    PubMed  Google Scholar 

  26. Morello M, Minciacchi VR, de Candia P et al (2013) Large oncosomes mediate intercellular transfer of functional microRNA. Cell Cycle 12(22):3526–3536

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Melentijevic I, Toth ML, Arnold ML et al (2017) C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature 542(7641):367–371

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang H, Freitas D, Kim HS et al (2018) Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol 20(3):332–343

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mitchell P, Petfalski E, Shevchenko A et al (1997) The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′ → 5′ exoribonucleases. Cell 91(4):457–466

    CAS  PubMed  Google Scholar 

  30. Raposo G, Nijman HW, Stoorvogel W et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3):1161–1172

    CAS  PubMed  Google Scholar 

  31. Vidal MJ, Stahl PD (1993) The small GTP-binding proteins Rab4 and ARF are associated with released exosomes during reticulocyte maturation. Eur J Cell Biol 60(2):261–267

    CAS  PubMed  Google Scholar 

  32. Johnstone RM (1992) The Jeanne Manery-Fisher Memorial Lecture 1991. Maturation of reticulocytes: formation of exosomes as a mechanism for shedding membrane proteins. Biochem Cell Biol 70(3–4):179–190

    CAS  PubMed  Google Scholar 

  33. Johnstone RM, Bianchini A, Teng K (1989) Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood 74(5):1844–1851

    CAS  PubMed  Google Scholar 

  34. Vidal M, Sainte-Marie J, Philippot JR et al (1989) Asymmetric distribution of phospholipids in the membrane of vesicles released during in vitro maturation of guinea pig reticulocytes: evidence precluding a role for “aminophospholipid translocase.” J Cell Physiol 140(3):455–462

    CAS  PubMed  Google Scholar 

  35. Pan BT, Teng K, Wu C et al (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101(3):942–948

    CAS  PubMed  Google Scholar 

  36. Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97(2):329–339

    CAS  PubMed  Google Scholar 

  37. Witwer KW, Thery C (2019) Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. J Extracell Vesicles 8(1):1648167

    PubMed  PubMed Central  Google Scholar 

  38. Doyle LM, Wang MZ (2019) Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8(7):727

    CAS  PubMed Central  Google Scholar 

  39. Momen-Heravi F (2017) Isolation of extracellular vesicles by ultracentrifugation. Methods Mol Biol 1660:25–32

    CAS  PubMed  Google Scholar 

  40. Onodi Z, Pelyhe C, Terezia Nagy C et al (2018) Isolation of high-purity extracellular vesicles by the combination of iodixanol density gradient ultracentrifugation and bind-elute chromatography from blood plasma. Front Physiol 9:1479

    PubMed  PubMed Central  Google Scholar 

  41. Royo F, Thery C, Falcon-Perez JM et al (2020) Methods for separation and characterization of extracellular vesicles: results of a worldwide survey performed by the isev rigor and standardization subcommittee. Cells 9(9):1955

    CAS  PubMed Central  Google Scholar 

  42. Li P, Kaslan M, Lee SH et al (2017) Progress in exosome isolation techniques. Theranostics 7(3):789–804

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu F, Vermesh O, Mani V et al (2017) The exosome total isolation chip. ACS Nano 11(11):10712–10723

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gamez-Valero A, Monguio-Tortajada M, Carreras-Planella L et al (2016) Size-Exclusion Chromatography-based isolation minimally alters extracellular vesicles’ characteristics compared to precipitating agents. Sci Rep 6:33641

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Musante L, Tataruch D, Gu D et al (2014) A simplified method to recover urinary vesicles for clinical applications, and sample banking. Sci Rep 4:7532

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Heinemann ML, Ilmer M, Silva LP et al (2014) Benchtop isolation and characterization of functional exosomes by sequential filtration. J Chromatogr A 1371:125–135

    CAS  PubMed  Google Scholar 

  47. Jeong S, Park J, Pathania D et al (2016) Integrated magneto-electrochemical sensor for exosome analysis. ACS Nano 10(2):1802–1809

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nameta M, Saijo Y, Ohmoto Y et al (2016) Disruption of membranes of extracellular vesicles is necessary for ELISA determination of urine AQP2: proof of disruption and epitopes of AQP2 antibodies. Int J Mol Sci 17(10):1634

    PubMed Central  Google Scholar 

  49. Rider MA, Hurwitz SN, Meckes DG Jr (2016) ExtraPEG: a polyethylene glycol-based method for enrichment of extracellular vesicles. Sci Rep 6:23978

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Samsonov R, Shtam T, Burdakov V et al (2016) Lectin-induced agglutination method of urinary exosomes isolation followed by mi-RNA analysis: application for prostate cancer diagnostic. Prostate 76(1):68–79

    CAS  PubMed  Google Scholar 

  51. Linares R, Tan S, Gounou C et al (2017) Imaging and quantification of extracellular vesicles by transmission electron microscopy. Methods Mol Biol 1545:43–54

    CAS  PubMed  Google Scholar 

  52. Dragovic RA, Gardiner C, Brooks AS et al (2011) Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine 7(6):780–788

    CAS  PubMed  Google Scholar 

  53. Maas SL, Broekman ML, de Vrij J (2017) Tunable resistive pulse sensing for the characterization of extracellular vesicles. Methods Mol Biol 1545:21–33

    CAS  PubMed  Google Scholar 

  54. Palmieri V, Lucchetti D, Gatto I et al (2014) Dynamic light scattering for the characterization and counting of extracellular vesicles: a powerful noninvasive tool. J Nanopart Res 16(9):2583

    Google Scholar 

  55. Nolte-‘t Hoen EN, van der Vlist EJ, Aalberts M et al (2012) Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine 8(5):712–720

    PubMed  Google Scholar 

  56. Schmidt C, Gronborg M, Deckert J et al (2014) Mass spectrometry-based relative quantification of proteins in precatalytic and catalytically active spliceosomes by metabolic labeling (SILAC), chemical labeling (iTRAQ), and label-free spectral count. RNA 20(3):406–420

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yanez-Mo M, Siljander PR, Andreu Z et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066

    PubMed  Google Scholar 

  58. Raimondo F, Morosi L, Chinello C et al (2011) Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics 11(4):709–720

    CAS  PubMed  Google Scholar 

  59. Choi DS, Kim DK, Kim YK et al (2013) Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics 13(10–11):1554–1571

    CAS  PubMed  Google Scholar 

  60. Yoon YJ, Kim OY, Gho YS (2014) Extracellular vesicles as emerging intercellular communicasomes. BMB Rep 47(10):531–539

    PubMed  PubMed Central  Google Scholar 

  61. Zaborowski MP, Balaj L, Breakefield XO et al (2015) Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience 65(8):783–797

    PubMed  PubMed Central  Google Scholar 

  62. Keerthikumar S, Chisanga D, Ariyaratne D et al (2016) ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol 428(4):688–692

    CAS  PubMed  Google Scholar 

  63. Fu H, Hu D, Zhang L et al (2018) Role of extracellular vesicles in rheumatoid arthritis. Mol Immunol 93:125–132

    CAS  PubMed  Google Scholar 

  64. Berckmans RJ, Nieuwland R, Kraan MC et al (2005) Synovial microparticles from arthritic patients modulate chemokine and cytokine release by synoviocytes. Arthritis Res Ther 7(3):R536–R544

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Reich N, Beyer C, Gelse K et al (2011) Microparticles stimulate angiogenesis by inducing ELR(+) CXC-chemokines in synovial fibroblasts. J Cell Mol Med 15(4):756–762

    CAS  PubMed  Google Scholar 

  66. Szklarczyk D, Franceschini A, Kuhn M et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Database issue):D561–D568

    CAS  PubMed  Google Scholar 

  67. Dunker AK, Lawson JD, Brown CJ et al (2001) Intrinsically disordered protein. J Mol Graph Model 19(1):26–59

    CAS  PubMed  Google Scholar 

  68. Oldfield CJ, Dunker AK (2014) Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem 83:553–584

    CAS  PubMed  Google Scholar 

  69. Uversky VN (2013) Unusual biophysics of intrinsically disordered proteins. Biochim Biophys Acta 1834(5):932–951

    CAS  PubMed  Google Scholar 

  70. Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804(6):1231–1264

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Uversky VN (2011) Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Chem Soc Rev 40(3):1623–1634

    CAS  PubMed  Google Scholar 

  72. Uversky VN (2013) Intrinsic disorder-based protein interactions and their modulators. Curr Pharm Des 19(23):4191–4213

    CAS  PubMed  Google Scholar 

  73. Dunker AK, Obradovic Z, Romero P et al (2000) Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 11:161–171

    CAS  PubMed  Google Scholar 

  74. Dunker AK, Silman I, Uversky VN et al (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18(6):756–764

    CAS  PubMed  Google Scholar 

  75. Ward JJ, Sodhi JS, McGuffin LJ et al (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645

    CAS  PubMed  Google Scholar 

  76. Uversky VN (2010) The mysterious unfoldome: structureless, underappreciated, yet vital part of any given proteome. J Biomed Biotechnol 2010:568068

    PubMed  Google Scholar 

  77. Xue B, Dunker AK, Uversky VN (2012) Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn 30(2):137–149

    CAS  PubMed  Google Scholar 

  78. Peng Z, Yan J, Fan X et al (2015) Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol Life Sci 72(1):137–151

    CAS  PubMed  Google Scholar 

  79. Tokuriki N, Oldfield CJ, Uversky VN et al (2009) Do viral proteins possess unique biophysical features? Trends Biochem Sci 34(2):53–59

    CAS  PubMed  Google Scholar 

  80. Xue B, Williams RW, Oldfield CJ et al (2010) Archaic chaos: intrinsically disordered proteins in Archaea. BMC Syst Biol 4(Suppl 1):S1

    PubMed  PubMed Central  Google Scholar 

  81. Tompa P, Dosztanyi Z, Simon I (2006) Prevalent structural disorder in E. coli and S. cerevisiae proteomes. J Proteome Res 5(8):1996–2000

    CAS  PubMed  Google Scholar 

  82. Krasowski MD, Reschly EJ, Ekins S (2008) Intrinsic disorder in nuclear hormone receptors. J Proteome Res 7(10):4359–4372

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Shimizu K, Toh H (2009) Interaction between intrinsically disordered proteins frequently occurs in a human protein-protein interaction network. J Mol Biol 392(5):1253–1265

    CAS  PubMed  Google Scholar 

  84. Pentony MM, Jones DT (2010) Modularity of intrinsic disorder in the human proteome. Proteins 78(1):212–221

    CAS  PubMed  Google Scholar 

  85. Tompa P, Kalmar L (2010) Power law distribution defines structural disorder as a structural element directly linked with function. J Mol Biol 403(3):346–350

    CAS  PubMed  Google Scholar 

  86. Schad E, Tompa P, Hegyi H (2011) The relationship between proteome size, structural disorder and organism complexity. Genome Biol 12(12):R120

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Dyson HJ (2011) Expanding the proteome: disordered and alternatively folded proteins. Q Rev Biophys 44(4):467–518

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Pancsa R, Tompa P (2012) Structural disorder in eukaryotes. PLoS ONE 7(4):e34687

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Midic U, Obradovic Z (2012) Intrinsic disorder in putative protein sequences. Proteome Sci 10(Suppl 1):S19

    PubMed  PubMed Central  Google Scholar 

  90. Hegyi H, Tompa P (2012) Increased structural disorder of proteins encoded on human sex chromosomes. Mol Biosyst 8(1):229–236

    CAS  PubMed  Google Scholar 

  91. Korneta I, Bujnicki JM (2012) Intrinsic disorder in the human spliceosomal proteome. PLoS Comput Biol 8(8):e1002641

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kahali B, Ghosh TC (2013) Disorderness in Escherichia coli proteome: perception of folding fidelity and protein-protein interactions. J Biomol Struct Dyn 31(5):472–476

    CAS  PubMed  Google Scholar 

  93. Di Domenico T, Walsh I, Tosatto SC (2013) Analysis and consensus of currently available intrinsic protein disorder annotation sources in the MobiDB database. BMC Bioinform 14(Suppl 7):S3

    Google Scholar 

  94. Rajagopalan K, Mooney SM, Parekh N et al (2011) A majority of the cancer/testis antigens are intrinsically disordered proteins. J Cell Biochem 112(11):3256–3267

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Uversky VN (2015) The multifaceted roles of intrinsic disorder in protein complexes. FEBS Lett 589:2498–2506

    CAS  PubMed  Google Scholar 

  96. Mammen M, Choi SK, Whitesides GM (1998) Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37(20):2755–2794

    CAS  Google Scholar 

  97. Schulz GE (1979) Nucleotide binding proteins. In: Balaban M (ed) Molecular mechanism of biological recognition. Elsevier/North-Holland Biomedical Press, New York, pp 79–94

    Google Scholar 

  98. Dunker AK, Brown CJ, Lawson JD et al (2002) Intrinsic disorder and protein function. Biochemistry 41(21):6573–6582

    CAS  PubMed  Google Scholar 

  99. Dunker AK, Brown CJ, Obradovic Z (2002) Identification and functions of usefully disordered proteins. Adv Protein Chem 62:25–49

    CAS  PubMed  Google Scholar 

  100. Wright PE, Dyson HJ (2009) Linking folding and binding. Curr Opin Struct Biol 19(1):31–38

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Meador WE, Means AR, Quiocho FA (1993) Modulation of calmodulin plasticity in molecular recognition on the basis of X-ray structures. Science 262(5140):1718–1721

    CAS  PubMed  Google Scholar 

  102. Kriwacki RW, Hengst L, Tennant L et al (1996) Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc Natl Acad Sci USA 93(21):11504–11509

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Dunker AK, Garner E, Guilliot S et al (1998) Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput 3:473–484

    Google Scholar 

  104. Uversky VN (2003) Protein folding revisited. A polypeptide chain at the folding-misfolding-nonfolding cross-roads: which way to go? Cell Mol Life Sci 60(9):1852–1871

    CAS  PubMed  Google Scholar 

  105. Dunker AK, Cortese MS, Romero P et al (2005) Flexible nets: the roles of intrinsic disorder in protein interaction networks. FEBS J 272(20):5129–5148

    CAS  PubMed  Google Scholar 

  106. Dajani R, Fraser E, Roe SM et al (2003) Structural basis for recruitment of glycogen synthase kinase 3beta to the axin-APC scaffold complex. Embo J 22(3):494–501

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 12(1):54–60

    CAS  PubMed  Google Scholar 

  108. Hsu WL, Oldfield CJ, Xue B et al (2013) Exploring the binding diversity of intrinsically disordered proteins involved in one-to-many binding. Protein Sci 22(3):258–273

    CAS  PubMed  Google Scholar 

  109. Oldfield CJ, Meng J, Yang JY et al (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genom 9(Suppl 1):S1

    Google Scholar 

  110. Tompa P, Fuxreiter M (2008) Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem Sci 33(1):2–8

    CAS  PubMed  Google Scholar 

  111. Hazy E, Tompa P (2009) Limitations of induced folding in molecular recognition by intrinsically disordered proteins. ChemPhysChem 10(9–10):1415–1419

    CAS  PubMed  Google Scholar 

  112. Sigalov A, Aivazian D, Stern L (2004) Homooligomerization of the cytoplasmic domain of the T cell receptor zeta chain and of other proteins containing the immunoreceptor tyrosine-based activation motif. Biochemistry 43(7):2049–2061

    CAS  PubMed  Google Scholar 

  113. Sigalov AB, Zhuravleva AV, Orekhov VY (2007) Binding of intrinsically disordered proteins is not necessarily accompanied by a structural transition to a folded form. Biochimie 89(3):419–421

    CAS  PubMed  Google Scholar 

  114. Permyakov SE, Millett IS, Doniach S et al (2003) Natively unfolded C-terminal domain of caldesmon remains substantially unstructured after the effective binding to calmodulin. Proteins 53(4):855–862

    CAS  PubMed  Google Scholar 

  115. Fuxreiter M (2012) Fuzziness: linking regulation to protein dynamics. Mol Biosyst 8(1):168–177

    CAS  PubMed  Google Scholar 

  116. Fuxreiter M, Tompa P (2012) Fuzzy complexes: a more stochastic view of protein function. Adv Exp Med Biol 725:1–14

    CAS  PubMed  Google Scholar 

  117. Sharma R, Raduly Z, Miskei M et al (2015) Fuzzy complexes: specific binding without complete folding. FEBS Lett 589:2533–2542

    CAS  PubMed  Google Scholar 

  118. Patil A, Nakamura H (2006) Disordered domains and high surface charge confer hubs with the ability to interact with multiple proteins in interaction networks. FEBS Lett 580(8):2041–2045

    CAS  PubMed  Google Scholar 

  119. Ekman D, Light S, Bjorklund AK et al (2006) What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae? Genome Biol 7(6):R45

    PubMed  PubMed Central  Google Scholar 

  120. Haynes C, Oldfield CJ, Ji F et al (2006) Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2(8):e100

    PubMed  PubMed Central  Google Scholar 

  121. Dosztanyi Z, Chen J, Dunker AK et al (2006) Disorder and sequence repeats in hub proteins and their implications for network evolution. J Proteome Res 5(11):2985–2995

    CAS  PubMed  Google Scholar 

  122. Singh GP, Dash D (2007) Intrinsic disorder in yeast transcriptional regulatory network. Proteins 68(3):602–605

    CAS  PubMed  Google Scholar 

  123. Singh GP, Ganapathi M, Dash D (2007) Role of intrinsic disorder in transient interactions of hub proteins. Proteins 66(4):761–765

    CAS  PubMed  Google Scholar 

  124. Palmisano G, Jensen SS, Le Bihan MC et al (2012) Characterization of membrane-shed microvesicles from cytokine-stimulated beta-cells using proteomics strategies. Mol Cell Proteom 11(8):230–243

    Google Scholar 

  125. Palmisano G, Parker BL, Engholm-Keller K et al (2012) A novel method for the simultaneous enrichment, identification, and quantification of phosphopeptides and sialylated glycopeptides applied to a temporal profile of mouse brain development. Mol Cell Proteom 11(11):1191–1202

    Google Scholar 

  126. Peruzzotti-Jametti L, Bernstock JD, Willis CM et al (2021) Neural stem cells traffic functional mitochondria via extracellular vesicles. PLoS Biol 19(4):e3001166

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    CAS  PubMed  Google Scholar 

  128. Eldh M, Lotvall J, Malmhall C et al (2012) Importance of RNA isolation methods for analysis of exosomal RNA: evaluation of different methods. Mol Immunol 50(4):278–286

    CAS  PubMed  Google Scholar 

  129. Balaj L, Lessard R, Dai L et al (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180

    PubMed  Google Scholar 

  130. Guescini M, Genedani S, Stocchi V et al (2010) Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J Neural Transm (Vienna) 117(1):1–4

    CAS  Google Scholar 

  131. Pfrieger FW, Vitale N (2018) Cholesterol and the journey of extracellular vesicles. J Lipid Res 59(12):2255–2261

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Pollet H, Conrard L, Cloos AS et al (2018) Plasma membrane lipid domains as platforms for vesicle biogenesis and shedding? Biomolecules 8(3):94

    PubMed Central  Google Scholar 

  133. Skotland T, Sagini K, Sandvig K et al (2020) An emerging focus on lipids in extracellular vesicles. Adv Drug Deliv Rev 159:308–321

    CAS  PubMed  Google Scholar 

  134. Laulagnier K, Motta C, Hamdi S et al (2004) Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J 380(Pt 1):161–171

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Record M, Carayon K, Poirot M et al (2014) Exosomes as new vesicular lipid transporters involved in cell–cell communication and various pathophysiologies. Biochim Biophys Acta 1841(1):108–120

    CAS  PubMed  Google Scholar 

  136. Kumeda N, Ogawa Y, Akimoto Y et al (2017) Characterization of membrane integrity and morphological stability of human salivary exosomes. Biol Pharm Bull 40(8):1183–1191

    CAS  PubMed  Google Scholar 

  137. Richter M, Fuhrmann K, Fuhrmann G (2019) Evaluation of the storage stability of extracellular vesicles. J Vis Exp 22(147):e59584

    Google Scholar 

  138. Tetta C, Ghigo E, Silengo L et al (2013) Extracellular vesicles as an emerging mechanism of cell-to-cell communication. Endocrine 44(1):11–19

    CAS  PubMed  Google Scholar 

  139. Gould SJ, Raposo G (2013) As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles 2:20389

    Google Scholar 

  140. Thery C, Boussac M, Veron P et al (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166(12):7309–7318

    CAS  PubMed  Google Scholar 

  141. Poon IK, Lucas CD, Rossi AG et al (2014) Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol 14(3):166–180

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Kinchen JM, Doukoumetzidis K, Almendinger J et al (2008) A pathway for phagosome maturation during engulfment of apoptotic cells. Nat Cell Biol 10(5):556–566

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Kalra H, Drummen GP, Mathivanan S (2016) Focus on extracellular vesicles: introducing the next small big thing. Int J Mol Sci 17(2):170

    PubMed  PubMed Central  Google Scholar 

  144. Li W (2012) Eat-me signals: keys to molecular phagocyte biology and “appetite” control. J Cell Physiol 227(4):1291–1297

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Lleo A, Zhang W, McDonald WH et al (2014) Shotgun proteomics: identification of unique protein profiles of apoptotic bodies from biliary epithelial cells. Hepatology 60(4):1314–1323

    CAS  PubMed  Google Scholar 

  146. Borges FT, Reis LA, Schor N (2013) Extracellular vesicles: structure, function, and potential clinical uses in renal diseases. Braz J Med Biol Res 46(10):824–830

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Stein JM, Luzio JP (1991) Ectocytosis caused by sublytic autologous complement attack on human neutrophils. The sorting of endogenous plasma-membrane proteins and lipids into shed vesicles. Biochem J 274(Pt 2):381–386

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Escola JM, Kleijmeer MJ, Stoorvogel W et al (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273(32):20121–20127

    CAS  PubMed  Google Scholar 

  149. Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19(2):43–51

    CAS  PubMed  Google Scholar 

  150. Taylor J, Bebawy M (2019) Proteins regulating microvesicle biogenesis and multidrug resistance in cancer. Proteomics 19(1–2):e1800165

    PubMed  Google Scholar 

  151. Wilson HL, Francis SE, Dower SK et al (2004) Secretion of intracellular IL-1 receptor antagonist (type 1) is dependent on P2X7 receptor activation. J Immunol 173(2):1202–1208

    CAS  PubMed  Google Scholar 

  152. Obregon C, Rothen-Rutishauser B, Gitahi SK et al (2006) Exovesicles from human activated dendritic cells fuse with resting dendritic cells, allowing them to present alloantigens. Am J Pathol 169(6):2127–2136

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Antonyak MA, Cerione RA (2015) Emerging picture of the distinct traits and functions of microvesicles and exosomes. Proc Natl Acad Sci USA 112(12):3589–3590

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Menck K, Bleckmann A, Schulz M et al (2017) Isolation and characterization of microvesicles from peripheral blood. J Vis Exp 6(119):e55057

    Google Scholar 

  155. Li CJ, Liu Y, Chen Y et al (2013) Novel proteolytic microvesicles released from human macrophages after exposure to tobacco smoke. Am J Pathol 182(5):1552–1562

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Heijnen HF, Schiel AE, Fijnheer R et al (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94(11):3791–3799

    CAS  PubMed  Google Scholar 

  157. Pluskota E, Woody NM, Szpak D et al (2008) Expression, activation, and function of integrin alphaMbeta2 (Mac-1) on neutrophil-derived microparticles. Blood 112(6):2327–2335

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Shet AS, Aras O, Gupta K et al (2003) Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood 102(7):2678–2683

    CAS  PubMed  Google Scholar 

  159. Desrochers LM, Bordeleau F, Reinhart-King CA et al (2016) Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nat Commun 7:11958

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Cai H, Reinisch K, Ferro-Novick S (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12(5):671–682

    CAS  PubMed  Google Scholar 

  161. Iakoucheva LM, Radivojac P, Brown CJ et al (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32(3):1037–1049

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Pejaver V, Hsu WL, Xin F et al (2014) The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Sci 23(8):1077–1093

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhou J, Zhao S, Dunker AK (2018) Intrinsically disordered proteins link alternative splicing and post-translational modifications to complex cell signaling and regulation. J Mol Biol 430(16):2342–2359

    CAS  PubMed  Google Scholar 

  164. Niklas KJ, Bondos SE, Dunker AK et al (2015) Rethinking gene regulatory networks in light of alternative splicing, intrinsically disordered protein domains, and post-translational modifications. Front Cell Dev Biol 3:8

    PubMed  PubMed Central  Google Scholar 

  165. Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    CAS  PubMed  Google Scholar 

  166. Gusachenko ON, Zenkova MA, Vlassov VV (2013) Nucleic acids in exosomes: disease markers and intercellular communication molecules. Biochem Mosc 78(1):1–7

    CAS  Google Scholar 

  167. Ostrowski M, Carmo NB, Krumeich S et al (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19–30 (sup pp 1–13)

    CAS  PubMed  Google Scholar 

  168. Bucci C, Thomsen P, Nicoziani P et al (2000) Rab7: a key to lysosome biogenesis. Mol Biol Cell 11(2):467–480

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Wollert T, Hurley JH (2010) Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464(7290):864–869

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Babst M, Katzmann DJ, Estepa-Sabal EJ et al (2002) Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell 3(2):271–282

    CAS  PubMed  Google Scholar 

  171. Qin J, Xu Q (2014) Functions and application of exosomes. Acta Pol Pharm 71(4):537–543

    PubMed  Google Scholar 

  172. Kowal J, Arras G, Colombo M et al (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA 113(8):E968–E977

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Lim J, Choi M, Lee H et al (2019) Direct isolation and characterization of circulating exosomes from biological samples using magnetic nanowires. J Nanobiotechnol 17(1):1

    Google Scholar 

  174. Andreu Z, Yanez-Mo M (2014) Tetraspanins in extracellular vesicle formation and function. Front Immunol 5:442

    PubMed  PubMed Central  Google Scholar 

  175. Crescitelli R, Lasser C, Szabo TG et al (2013) Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles 2:20677

    Google Scholar 

  176. Willms E, Cabanas C, Mager I et al (2018) Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front Immunol 9:738

    PubMed  PubMed Central  Google Scholar 

  177. Leone DA, Rees AJ, Kain R (2018) Dendritic cells and routing cargo into exosomes. Immunol Cell Biol 96:683–693

    CAS  Google Scholar 

  178. Admyre C, Bohle B, Johansson SM et al (2007) B cell-derived exosomes can present allergen peptides and activate allergen-specific T cells to proliferate and produce TH2-like cytokines. J Allergy Clin Immunol 120(6):1418–1424

    CAS  PubMed  Google Scholar 

  179. Kooijmans SA, Vader P, van Dommelen SM et al (2012) Exosome mimetics: a novel class of drug delivery systems. Int J Nanomed 7:1525–1541

    CAS  Google Scholar 

  180. Subedi P, Schneider M, Philipp J et al (2019) Comparison of methods to isolate proteins from extracellular vesicles for mass spectrometry-based proteomic analyses. Anal Biochem 584:113390

    CAS  PubMed  Google Scholar 

  181. Koh YQ, Peiris HN, Vaswani K et al (2017) Characterization of exosomes from body fluids of dairy cows. J Anim Sci 95(9):3893–3904

    CAS  PubMed  Google Scholar 

  182. Sedykh S, Kuleshova A, Nevinsky G (2020) Milk Exosomes: Perspective Agents for Anticancer Drug Delivery. Int J Mol Sci 21(18):6646–6651. https://doi.org/10.3390/ijms21186646

    Article  CAS  PubMed Central  Google Scholar 

  183. Admyre C, Johansson SM, Qazi KR et al (2007) Exosomes with immune modulatory features are present in human breast milk. J Immunol 179(3):1969–1978

    CAS  PubMed  Google Scholar 

  184. Soares Martins T, Catita J, Martins Rosa I et al (2018) Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS ONE 13(6):e0198820

    PubMed  PubMed Central  Google Scholar 

  185. Yang C, Guo WB, Zhang WS et al (2017) Comprehensive proteomics analysis of exosomes derived from human seminal plasma. Andrology 5(5):1007–1015

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Skalnikova HK, Bohuslavova B, Turnovcova K et al (2019) Isolation and characterization of small extracellular vesicles from porcine blood plasma, cerebrospinal fluid, and seminal plasma. Proteomes 7(2):17

    CAS  PubMed  Google Scholar 

  187. Butler JT, Abdelhamed S, Kurre P (2018) Extracellular vesicles in the hematopoietic microenvironment. Haematologica 103(3):382–394

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Lopez-Verrilli MA, Picou F, Court FA (2013) Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia 61(11):1795–1806

    PubMed  Google Scholar 

  189. Wang J, Yao Y, Chen X et al (2018) Host derived exosomes-pathogens interactions: potential functions of exosomes in pathogen infection. Biomed Pharmacother 108:1451–1459

    CAS  PubMed  Google Scholar 

  190. Osaki M, Okada F (2019) Exosomes and their role in cancer progression. Yonago Acta Med 62(2):182–190

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Tian W, Liu S, Li B (2019) Potential role of exosomes in cancer metastasis. Biomed Res Int 2019:4649705

    PubMed  PubMed Central  Google Scholar 

  192. Jan AT, Malik MA, Rahman S et al (2017) Perspective insights of exosomes in neurodegenerative diseases: a critical appraisal. Front Aging Neurosci 9:317

    PubMed  PubMed Central  Google Scholar 

  193. Anel A, Gallego-Lleyda A, de Miguel D et al (2019) Role of exosomes in the regulation of T-cell mediated immune responses and in autoimmune disease. Cells 8(2):154

    CAS  PubMed Central  Google Scholar 

  194. Li XB, Zhang ZR, Schluesener HJ et al (2006) Role of exosomes in immune regulation. J Cell Mol Med 10(2):364–375

    CAS  PubMed  Google Scholar 

  195. Crenshaw BJ, Sims B, Matthews QL (2018) Biological function of exosomes as diagnostic markers and therapeutic delivery vehicles in carcinogenesis and infectious diseases. In: Farrukh MA (ed) Nanomedicines. IntechOpen

  196. Nie Y, Sato Y, Garner RT et al (2019) Skeletal muscle-derived exosomes regulate endothelial cell functions via reactive oxygen species-activated nuclear factor-kappaB signalling. Exp Physiol 104(8):1262–1273

    CAS  PubMed  Google Scholar 

  197. Corrado C, Raimondo S, Chiesi A et al (2013) Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci 14(3):5338–5366

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Boriachek K, Islam MN, Moller A et al (2018) Biological functions and current advances in isolation and detection strategies for exosome nanovesicles. Small 14(6):1702153

    Google Scholar 

  199. Li Q, Wang H, Peng H et al (2019) Exosomes: versatile nano mediators of immune regulation. Cancers (Basel) 11(10):1557

    CAS  Google Scholar 

  200. Sprent J (2005) Direct stimulation of naive T cells by antigen-presenting cell vesicles. Blood Cells Mol Dis 35(1):17–20

    CAS  PubMed  Google Scholar 

  201. Saunderson SC, McLellan AD (2017) Role of lymphocyte subsets in the immune response to primary B cell-derived exosomes. J Immunol 199(7):2225–2235

    CAS  PubMed  Google Scholar 

  202. Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C et al (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282

    PubMed  Google Scholar 

  203. Segura E, Amigorena S, Thery C (2005) Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells Mol Dis 35(2):89–93

    CAS  PubMed  Google Scholar 

  204. Morelli AE, Larregina AT, Shufesky WJ et al (2004) Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104(10):3257–3266

    CAS  PubMed  Google Scholar 

  205. Nolte-‘t Hoen EN, Buschow SI, Anderton SM et al (2009) Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood 113(9):1977–1981

    PubMed  Google Scholar 

  206. Quah BJ, O’Neill HC (2005) The immunogenicity of dendritic cell-derived exosomes. Blood Cells Mol Dis 35(2):94–110

    CAS  PubMed  Google Scholar 

  207. Yin W, Ouyang S, Li Y et al (2013) Immature dendritic cell-derived exosomes: a promise subcellular vaccine for autoimmunity. Inflammation 36(1):232–240

    CAS  PubMed  Google Scholar 

  208. Yang X, Meng S, Jiang H et al (2011) Exosomes derived from immature bone marrow dendritic cells induce tolerogenicity of intestinal transplantation in rats. J Surg Res 171(2):826–832

    CAS  PubMed  Google Scholar 

  209. Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28(3):585–596

    CAS  PubMed  Google Scholar 

  210. Zhang B, Yin Y, Lai RC et al (2014) Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev 23(11):1233–1244

    CAS  PubMed  Google Scholar 

  211. Chen W, Huang Y, Han J et al (2016) Immunomodulatory effects of mesenchymal stromal cells-derived exosome. Immunol Res 64(4):831–840

    CAS  PubMed  Google Scholar 

  212. Del Fattore A, Luciano R, Pascucci L et al (2015) Immunoregulatory effects of mesenchymal stem cell-derived extracellular vesicles on T lymphocytes. Cell Transplant 24(12):2615–2627

    PubMed  Google Scholar 

  213. Duffy MM, Ritter T, Ceredig R et al (2011) Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Res Ther 2(4):34

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Mendt M, Rezvani K, Shpall E (2019) Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant 54(Suppl 2):789–792

    PubMed  Google Scholar 

  215. Kordelas L, Rebmann V, Ludwig AK et al (2014) MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28(4):970–973

    CAS  PubMed  Google Scholar 

  216. Paul S, Lal G (2017) The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front Immunol 8:1124

    PubMed  PubMed Central  Google Scholar 

  217. Fais S (2013) NK cell-released exosomes: natural nanobullets against tumors. Oncoimmunology 2(1):e22337

    PubMed  PubMed Central  Google Scholar 

  218. Jong AY, Wu CH, Li J et al (2017) Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells. J Extracell Vesicles 6(1):1294368

    PubMed  PubMed Central  Google Scholar 

  219. Chang HF, Bzeih H, Chitirala P et al (2017) Preparing the lethal hit: interplay between exo- and endocytic pathways in cytotoxic T lymphocytes. Cell Mol Life Sci 74(3):399–408

    CAS  PubMed  Google Scholar 

  220. Voskoboinik I, Whisstock JC, Trapani JA (2015) Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol 15(6):388–400

    CAS  PubMed  Google Scholar 

  221. Lugini L, Cecchetti S, Huber V et al (2012) Immune surveillance properties of human NK cell-derived exosomes. J Immunol 189(6):2833–2842

    CAS  PubMed  Google Scholar 

  222. Zhu L, Kalimuthu S, Gangadaran P et al (2017) Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics 7(10):2732–2745

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Li S, Li S, Wu S et al (2019) Exosomes modulate the viral replication and host immune responses in HBV infection. Biomed Res Int 2019:2103943

    PubMed  PubMed Central  Google Scholar 

  224. Wang G, Hu W, Chen H et al (2019) Cocktail strategy based on NK cell-derived exosomes and their biomimetic nanoparticles for dual tumor therapy. Cancers (Basel) 11(10):1560

    CAS  Google Scholar 

  225. Romano M, Fanelli G, Albany CJ et al (2019) Past, present, and future of regulatory T cell therapy in transplantation and autoimmunity. Front Immunol 10:43

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Li P, Liu C, Yu Z et al (2016) New insights into regulatory T cells: exosome- and non-coding RNA-mediated regulation of homeostasis and resident Treg cells. Front Immunol 7:574

    PubMed  PubMed Central  Google Scholar 

  227. Savina A, Furlan M, Vidal M et al (2003) Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem 278(22):20083–20090

    CAS  PubMed  Google Scholar 

  228. King HW, Michael MZ, Gleadle JM (2012) Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12:421

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Fontenot JD, Rasmussen JP, Gavin MA et al (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6(11):1142–1151

    CAS  PubMed  Google Scholar 

  230. Okoye IS, Coomes SM, Pelly VS et al (2014) MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity 41(1):89–103

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Smyth LA, Ratnasothy K, Tsang JY et al (2013) CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function. Eur J Immunol 43(9):2430–2440

    CAS  PubMed  Google Scholar 

  232. Tan L, Wu H, Liu Y et al (2016) Recent advances of exosomes in immune modulation and autoimmune diseases. Autoimmunity 49(6):357–365

    CAS  PubMed  Google Scholar 

  233. Yang C, Robbins PD (2012) Immunosuppressive exosomes: a new approach for treating arthritis. Int J Rheumatol 2012:573528

    PubMed  PubMed Central  Google Scholar 

  234. Tofino-Vian M, Guillen MI, Alcaraz MJ (2018) Extracellular vesicles: a new therapeutic strategy for joint conditions. Biochem Pharmacol 153:134–146

    CAS  PubMed  Google Scholar 

  235. Dudics S, Venkatesha SH, Moudgil KD (2018) The micro-RNA expression profiles of autoimmune arthritis reveal novel biomarkers of the disease and therapeutic response. Int J Mol Sci 19(8):2293

    PubMed Central  Google Scholar 

  236. Tsuno H, Arito M, Suematsu N et al (2018) A proteomic analysis of serum-derived exosomes in rheumatoid arthritis. BMC Rheumatol 2:35

    PubMed  PubMed Central  Google Scholar 

  237. Alghamdi MF, Redwan EM (2021) Advances in the diagnosis of autoimmune diseases based on citrullinated peptides/proteins. Expert Rev Mol Diagn 21(7):685–702. https://doi.org/10.1080/14737159.2021.1933946

    Article  CAS  PubMed  Google Scholar 

  238. Alghamdi MA, Redwan EM (2021) Interplay of microbiota and citrullination in the immunopathogenesis of rheumatoid arthritis. Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-021-09802-7

    Article  PubMed  Google Scholar 

  239. Zhang B, Zhao M, Lu Q (2020) Extracellular vesicles in rheumatoid arthritis and systemic lupus erythematosus: functions and applications. Front Immunol 11:575712

    CAS  PubMed  Google Scholar 

  240. Shenoda BB, Ajit SK (2016) Modulation of immune responses by exosomes derived from antigen-presenting cells. Clin Med Insights Pathol 9(Suppl 1):1–8

    PubMed  PubMed Central  Google Scholar 

  241. Withrow J, Murphy C, Liu Y et al (2016) Extracellular vesicles in the pathogenesis of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 18(1):286

    PubMed  PubMed Central  Google Scholar 

  242. Wieczorek M, Abualrous ET, Sticht J et al (2017) Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation. Front Immunol 8:292

    PubMed  PubMed Central  Google Scholar 

  243. Cloutier N, Tan S, Boudreau LH et al (2013) The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med 5(2):235–249

    CAS  PubMed  Google Scholar 

  244. Valitutti S (2008) Immunological synapse: center of attention again. Immunity 29(3):384–386

    CAS  PubMed  Google Scholar 

  245. Admyre C, Johansson SM, Paulie S et al (2006) Direct exosome stimulation of peripheral human T cells detected by ELISPOT. Eur J Immunol 36(7):1772–1781

    CAS  PubMed  Google Scholar 

  246. Segura E, Nicco C, Lombard B et al (2005) ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood 106(1):216–223

    CAS  PubMed  Google Scholar 

  247. Thery C, Duban L, Segura E et al (2002) Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 3(12):1156–1162

    CAS  PubMed  Google Scholar 

  248. Montecalvo A, Shufesky WJ, Stolz DB et al (2008) Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J Immunol 180(5):3081–3090

    CAS  PubMed  Google Scholar 

  249. Qazi KR, Gehrmann U, Domange Jordo E et al (2009) Antigen-loaded exosomes alone induce Th1-type memory through a B-cell-dependent mechanism. Blood 113(12):2673–2683

    CAS  PubMed  Google Scholar 

  250. Mor-Vaknin N, Punturieri A, Sitwala K et al (2006) The DEK nuclear autoantigen is a secreted chemotactic factor. Mol Cell Biol 26(24):9484–9496

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Mor-Vaknin N, Kappes F, Dick AE et al (2011) DEK in the synovium of patients with juvenile idiopathic arthritis: characterization of DEK antibodies and posttranslational modification of the DEK autoantigen. Arthritis Rheum 63(2):556–567

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Skriner K, Adolph K, Jungblut PR et al (2006) Association of citrullinated proteins with synovial exosomes. Arthritis Rheum 54(12):3809–3814

    CAS  PubMed  Google Scholar 

  253. Foers AD, Cheng L, Hill AF et al (2017) Review: extracellular vesicles in joint inflammation. Arthritis Rheumatol 69(7):1350–1362

    PubMed  Google Scholar 

  254. Yu R, Li C, Sun L et al (2018) Hypoxia induces production of citrullinated proteins in human fibroblast-like synoviocytes through regulating HIF1alpha. Scand J Immunol 87(4):e12654

    CAS  PubMed  Google Scholar 

  255. Gao K, Zhu W, Li H et al (2019) Association between cytokines and exosomes in synovial fluid of individuals with knee osteoarthritis. Mod Rheumatol 30(4):758–764. https://doi.org/10.1080/14397595.2019.1651445

    Article  CAS  PubMed  Google Scholar 

  256. Krajewska-Wlodarczyk M, Owczarczyk-Saczonek A, Zuber Z et al (2019) Role of microparticles in the pathogenesis of inflammatory joint diseases. Int J Mol Sci 20(21):5453

    CAS  PubMed Central  Google Scholar 

  257. Gyorgy B, Szabo TG, Turiak L et al (2012) Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle) signatures in joint diseases. PLoS ONE 7(11):e49726

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Headland SE, Jones HR, Norling LV et al (2015) Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis. Sci Transl Med 7(315):315ra190

    PubMed  PubMed Central  Google Scholar 

  259. Boilard E, Nigrovic PA, Larabee K et al (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327(5965):580–583

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Siljander PR (2011) Platelet-derived microparticles—an updated perspective. Thromb Res 127(Suppl 2):S30–S33

    CAS  PubMed  Google Scholar 

  261. Manara M, Sinigaglia L (2015) Bone and TNF in rheumatoid arthritis: clinical implications. RMD Open 1(Suppl 1):e000065

    PubMed  PubMed Central  Google Scholar 

  262. Vinuela-Berni V, Doniz-Padilla L, Figueroa-Vega N et al (2015) Proportions of several types of plasma and urine microparticles are increased in patients with rheumatoid arthritis with active disease. Clin Exp Immunol 180(3):442–451

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Konttinen YT, Ainola M, Valleala H et al (1999) Analysis of 16 different matrix metalloproteinases (MMP-1 to MMP-20) in the synovial membrane: different profiles in trauma and rheumatoid arthritis. Ann Rheum Dis 58(11):691–697

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Distler JH, Jungel A, Huber LC et al (2005) The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. Proc Natl Acad Sci USA 102(8):2892–2897

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Jungel A, Distler O, Schulze-Horsel U et al (2007) Microparticles stimulate the synthesis of prostaglandin E(2) via induction of cyclooxygenase 2 and microsomal prostaglandin E synthase 1. Arthritis Rheum 56(11):3564–3574

    CAS  PubMed  Google Scholar 

  266. Fattahi MJ, Mirshafiey A (2012) Prostaglandins and rheumatoid arthritis. Arthritis 2012:239310

    PubMed  PubMed Central  Google Scholar 

  267. Messer L, Alsaleh G, Freyssinet JM et al (2009) Microparticle-induced release of B-lymphocyte regulators by rheumatoid synoviocytes. Arthritis Res Ther 11(2):R40

    PubMed  PubMed Central  Google Scholar 

  268. Sedlmayr P, Blaschitz A, Wilders-Truschnig M et al (1995) Platelets contain interleukin-1 alpha and beta which are detectable on the cell surface after activation. Scand J Immunol 42(2):209–214

    CAS  PubMed  Google Scholar 

  269. Cloutier N, Pare A, Farndale RW et al (2012) Platelets can enhance vascular permeability. Blood 120(6):1334–1343

    CAS  PubMed  Google Scholar 

  270. Zhang HG, Liu C, Su K et al (2006) A membrane form of TNF-alpha presented by exosomes delays T cell activation-induced cell death. J Immunol 176(12):7385–7393

    CAS  PubMed  Google Scholar 

  271. Kelly E, Won A, Refaeli Y et al (2002) IL-2 and related cytokines can promote T cell survival by activating AKT. J Immunol 168(2):597–603

    CAS  PubMed  Google Scholar 

  272. Maeda Y, Farina NH, Matzelle MM et al (2017) Synovium-derived microRNAs regulate bone pathways in rheumatoid arthritis. J Bone Miner Res 32(3):461–472

    CAS  PubMed  Google Scholar 

  273. Bluml S, Bonelli M, Niederreiter B et al (2011) Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum 63(5):1281–1288

    PubMed  Google Scholar 

  274. Pandis I, Ospelt C, Karagianni N et al (2012) Identification of microRNA-221/222 and microRNA-323-3p association with rheumatoid arthritis via predictions using the human tumour necrosis factor transgenic mouse model. Ann Rheum Dis 71(10):1716–1723

    CAS  PubMed  Google Scholar 

  275. Nakasa T, Shibuya H, Nagata Y et al (2011) The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheum 63(6):1582–1590

    CAS  PubMed  Google Scholar 

  276. Menikou S, McArdle AJ, Li MS et al (2020) A proteomics-based method for identifying antigens within immune complexes. PLoS ONE 15(12):e0244157

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Song JE, Kim JS, Shin JH et al (2021) Role of synovial exosomes in osteoclast differentiation in inflammatory arthritis. Cells 10(1):120

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Schioppo T, Ubiali T, Ingegnoli F et al (2021) The role of extracellular vesicles in rheumatoid arthritis: a systematic review. Clin Rheumatol 40(9):3481–3497

    PubMed  PubMed Central  Google Scholar 

  279. Azoulay-Alfaguter I, Mor A (2020) Isolation and characterization of T lymphocyte-exosomes using mass spectrometry. Methods Mol Biol 2184:91–102

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Qin Q, Song R, Du P et al (2021) Systemic proteomic analysis reveals distinct exosomal proteins profiles in rheumatoid arthritis. J Immunol Res 2021:9421720

    PubMed  PubMed Central  Google Scholar 

  281. Burbano C, Villar-Vesga J, Vasquez G et al (2019) Proinflammatory differentiation of macrophages through microparticles that form immune complexes leads to T- and B-Cell activation in systemic autoimmune diseases. Front Immunol 10:2058

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Tavasolian F, Moghaddam AS, Rohani F et al (2020) Exosomes: effectual players in rheumatoid arthritis. Autoimmun Rev 19(6):102511

    CAS  PubMed  Google Scholar 

  283. Xin Y, Yang Z, Fei X et al (2018) THU0059 plasma exosomal mir-92a are involved in the occurrence and development of bone destruction in ra patients by inhibiting apoptosis of fibroblast-like synoviocytes. BMJ Publishing Group Ltd, London

    Google Scholar 

  284. Wang L, Wang C, Jia X et al (2018) Circulating exosomal miR-17 inhibits the induction of regulatory T cells via suppressing TGFBR II expression in rheumatoid arthritis. Cell Physiol Biochem 50(5):1754–1763

    CAS  PubMed  Google Scholar 

  285. Lim M-K, Song J, Kim S et al (2018) THU0087 Microrna-1915-3p in serum exosome is associated with disease activity of rheumatoid arthritis in korea. BMJ Publishing Group Ltd, London

    Google Scholar 

  286. Foers AD, Dagley LF, Chatfield S et al (2020) Proteomic analysis of extracellular vesicles reveals an immunogenic cargo in rheumatoid arthritis synovial fluid. Clin Transl Immunol 9(11):e1185

    CAS  Google Scholar 

  287. Ni Z, Zhou S, Li S et al (2020) Exosomes: roles and therapeutic potential in osteoarthritis. Bone Res 8:25

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Du T, Yan Z, Zhu S et al (2020) QKI deficiency leads to osteoporosis by promoting RANKL-induced osteoclastogenesis and disrupting bone metabolism. Cell Death Dis 11(5):330

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Hejrati A, Hasani B, Esmaili M et al (2021) Role of exosome in autoimmunity, with a particular emphasis on rheumatoid arthritis. Int J Rheum Dis 24(2):159–169

    CAS  PubMed  Google Scholar 

  290. Cowland JB, Borregaard N (2016) Granulopoiesis and granules of human neutrophils. Immunol Rev 273(1):11–28

    CAS  PubMed  Google Scholar 

  291. Rosas EC, Correa LB, das Graças Henriques M (2017) Neutrophils in rheumatoid arthritis: a target for discovering new therapies based on natural products. In: Khajah M (ed) Role of neutrophils in disease pathogenesis. IntechOpen

  292. Lenci E, Cosottini L, Trabocchi A (2021) Novel matrix metalloproteinase inhibitors: an updated patent review (2014–2020). Expert Opin Ther Pat 31(6):509–523. https://doi.org/10.1080/13543776.2021.1881481

    Article  CAS  PubMed  Google Scholar 

  293. Hu F, Li Y, Zheng L et al (2014) Toll-like receptors expressed by synovial fibroblasts perpetuate Th1 and th17 cell responses in rheumatoid arthritis. PLoS ONE 9(6):e100266

    PubMed  PubMed Central  Google Scholar 

  294. Chen J, Liu M, Luo X et al (2020) Exosomal miRNA-486-5p derived from rheumatoid arthritis fibroblast-like synoviocytes induces osteoblast differentiation through the Tob1/BMP/Smad pathway. Biomater Sci 8(12):3430–3442

    CAS  PubMed  Google Scholar 

  295. Yoo J, Lee SK, Lim M et al (2017) Exosomal amyloid A and lymphatic vessel endothelial hyaluronic acid receptor-1 proteins are associated with disease activity in rheumatoid arthritis. Arthritis Res Ther 19(1):119

    PubMed  PubMed Central  Google Scholar 

  296. Yuan FL, Li X, Lu WG et al (2013) Epidermal growth factor receptor (EGFR) as a therapeutic target in rheumatoid arthritis. Clin Rheumatol 32(3):289–292

    PubMed  Google Scholar 

  297. Lao MX, Xu HS (2020) Involvement of long non-coding RNAs in the pathogenesis of rheumatoid arthritis. Chin Med J (Engl) 133(8):941–950

    Google Scholar 

  298. Song J, Kim D, Han J et al (2015) PBMC and exosome-derived Hotair is a critical regulator and potent marker for rheumatoid arthritis. Clin Exp Med 15(1):121–126

    CAS  PubMed  Google Scholar 

  299. Dolati S, Shakouri SK, Dolatkhah N et al (2021) The role of exosomal non-coding RNAs in aging-related diseases. Biofactors 47(3):292–310. https://doi.org/10.1002/biof.1715

    Article  CAS  PubMed  Google Scholar 

  300. Lim MK, Yoo J, Sheen DH et al (2020) Serum exosomal miRNA-1915-3p is correlated with disease activity of Korean rheumatoid arthritis. In Vivo 34(5):2941–2945

    CAS  PubMed  PubMed Central  Google Scholar 

  301. Zakeri Z, Salmaninejad A, Hosseini N et al (2019) MicroRNA and exosome: key players in rheumatoid arthritis. J Cell Biochem 120:10930–10944

    CAS  Google Scholar 

  302. Cheng P, Wang J (2020) The potential of circulating microRNA-125a and microRNA-125b as markers for inflammation and clinical response to infliximab in rheumatoid arthritis patients. J Clin Lab Anal 34(8):e23329

    CAS  PubMed  PubMed Central  Google Scholar 

  303. Duan W, Zhang W, Jia J et al (2019) Exosomal microRNA in autoimmunity. Cell Mol Immunol 16(12):932–934

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Svenningsen P, Sabaratnam R, Jensen BL (2020) Urinary extracellular vesicles: origin, role as intercellular messengers and biomarkers; efficient sorting and potential treatment options. Acta Physiol (Oxf) 228(1):e13346

    CAS  Google Scholar 

  305. Vitorino R, Ferreira R, Guedes S et al (2021) What can urinary exosomes tell us? Cell Mol Life Sci 78(7):3265–3283

    CAS  PubMed  Google Scholar 

  306. Peng K, Vucetic S, Radivojac P et al (2005) Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol 3(1):35–60

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This report is apart from the Ph.D. thesis of M. Alghamdi.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceived the idea, edited and revised the manuscript, and managed the project: EMR; wrote the primary manuscript and edited it: MA; SB and SA participated in the collection of literature data, data curation, formal analysis, and evaluation. VNU participated in manuscript writing, editing, and revision.

Corresponding author

Correspondence to Elrashdy M. Redwan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alghamdi, M., Alamry, S.A., Bahlas, S.M. et al. Circulating extracellular vesicles and rheumatoid arthritis: a proteomic analysis. Cell. Mol. Life Sci. 79, 25 (2022). https://doi.org/10.1007/s00018-021-04020-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04020-4

Keywords

Navigation