Skip to main content

Advertisement

Log in

Macrophage Polarization and Bone Formation: A review

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

The contribution of inflammation to bone loss is well documented in arthritis and other diseases with an emphasis on how inflammatory cytokines promote osteoclastogenesis. Macrophages are the major producers of cytokines in inflammation, and the factors they produce depend upon their activation state or polarization. In recent years, it has become apparent that macrophages are also capable of interacting with osteoblasts and their mesenchymal precursors. This interaction provides growth and differentiation factors from one cell that act on the other and visa versa—a concept akin to the requirement for a feeder layer to grow hemopoietic cells or the coupling that occurs between osteoblasts and osteoclasts to maintain bone homeostasis. Alternatively, activated macrophages are the most likely candidates to promote bone formation and have also been implicated in the tissue repair process in other tissues. In bone, a number of factors, including oncostatin M, have been shown to promote osteoblast formation both in vitro and in vivo. This review discusses the different cell types involved, cellular mediators, and how this can be used to direct new bone anabolic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gordon S (2008) Elie Metchnikoff: father of natural immunity. Eur J Immunol 38(12):3257–3264

    Article  CAS  PubMed  Google Scholar 

  2. Mackaness GB (1962) Cellular resistance to infection. J Exp Med 116:381–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176(1):287–292

    Article  CAS  PubMed  Google Scholar 

  4. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164(12):6166–6173

    Article  CAS  PubMed  Google Scholar 

  5. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alasoo K, Martinez FO, Hale C, Gordon S, Powrie F, Dougan G, Mukhopadhyay S, Gaffney DJ (2015) Transcriptional profiling of macrophages derived from monocytes and iPS cells identifies a conserved response to LPS and novel alternative transcription. Sci Rep 5:12524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, Chmielewski K, Stewart KM, Ashall J, Everts B, Pearce EJ, Driggers EM, Artyomov MN (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42(3):419–430

    Article  CAS  PubMed  Google Scholar 

  8. Martinez FO, Helming L, Milde R, Varin A, Melgert BN, Draijer C, Thomas B, Fabbri M, Crawshaw A, Ho LP, Ten Hacken NH, Cobos Jimenez V, Kootstra NA, Hamann J, Greaves DR, Locati M, Mantovani A, Gordon S (2013) Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood 121(9):e57–69

    Article  CAS  PubMed  Google Scholar 

  9. van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL (1972) The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ 46(6):845–852

    PubMed  PubMed Central  Google Scholar 

  10. Quinn JM, Neale S, Fujikawa Y, McGee JO, Athanasou NA (1998) Human osteoclast formation from blood monocytes, peritoneal macrophages, and bone marrow cells. Calcif Tissue Int 62(6):527–531

    Article  CAS  PubMed  Google Scholar 

  11. Quinn JM, McGee JO, Athanasou NA (1998) Human tumour-associated macrophages differentiate into osteoclastic bone-resorbing cells. J Pathol 184(1):31–36

    Article  CAS  PubMed  Google Scholar 

  12. Bar-Shavit Z (2007) The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J Cell Biochem 102(5):1130–1139

    Article  CAS  PubMed  Google Scholar 

  13. Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW Jr, Ahmed-Ansari A, Sell KW, Pollard JW, Stanley ER (1990) Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci U S A 87(12):4828–4832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Charles JF, Hsu LY, Niemi EC, Weiss A, Aliprantis AO, Nakamura MC (2012) Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function. J Clin Invest 122(12):4592–4605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang H, Huang Y, Wang S, Fu R, Guo C, Wang H, Zhao J, Gaskin F, Chen J, Yang N, Fu SM (2015) Myeloid-derived suppressor cells contribute to bone erosion in collagen-induced arthritis by differentiating to osteoclasts. J Autoimmun

  16. Walsh MC, Choi Y (2014) Biology of the RANKL-RANK-OPG System in immunity, bone, and beyond. Front Immunol 5:511

    Article  PubMed  PubMed Central  Google Scholar 

  17. Adamopoulos IE, Mellins ED (2015) Alternative pathways of osteoclastogenesis in inflammatory arthritis. Nat Rev Rheumatol 11(3):189–194

    Article  CAS  PubMed  Google Scholar 

  18. Goldring SR (2015) Inflammatory signaling induced bone loss. Bone

  19. Monaco C, Nanchahal J, Taylor P, Feldmann M (2015) Anti-TNF therapy: past, present and future. Int Immunol 27(1):55–62

    Article  CAS  PubMed  Google Scholar 

  20. Sebbag M, Parry SL, Brennan FM, Feldmann M (1997) Cytokine stimulation of T lymphocytes regulates their capacity to induce monocyte production of tumor necrosis factor-alpha, but not interleukin-10: possible relevance to pathophysiology of rheumatoid arthritis. Eur J Immunol 27(3):624–632

    Article  CAS  PubMed  Google Scholar 

  21. Dimitroulas T, Nikas SN, Trontzas P, Kitas GD (2013) Biologic therapies and systemic bone loss in rheumatoid arthritis. Autoimmun Rev 12(10):958–966

    Article  CAS  PubMed  Google Scholar 

  22. Horwood NJ, Elliott J, Martin TJ, Gillespie MT (1998) Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells. Endocrinology 139(11):4743–4746

    Article  CAS  PubMed  Google Scholar 

  23. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Morinaga T, Higashio K, Martin TJ, Suda T (2000) Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 191(2):275–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao Z, Hou X, Yin X, Li Y, Duan R, Boyce BF, Yao Z (2015) TNF induction of NF-kappaB RelB enhances RANKL-induced osteoclastogenesis by promoting inflammatory macrophage differentiation but also limits it through suppression of NFATc1 expression. PLoS One 10(8):e0135728

    Article  PubMed  PubMed Central  Google Scholar 

  25. He D, Kou X, Yang R, Liu D, Wang X, Luo Q, Song Y, Liu F, Yan Y, Gan Y, Zhou Y (2015) M1-like macrophage polarization promotes orthodontic tooth movement. J Dent Res 94(9):1286–94

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Q, Atsuta I, Liu S, Chen C, Shi S, Le AD (2013) IL-17-mediated M1/M2 macrophage alteration contributes to pathogenesis of bisphosphonate-related osteonecrosis of the jaws. Clin Cancer Res 19(12):3176–3188

    Article  CAS  PubMed  Google Scholar 

  27. Walsh NC, Reinwald S, Manning CA, Condon KW, Iwata K, Burr DB, Gravallese EM (2009) Osteoblast function is compromised at sites of focal bone erosion in inflammatory arthritis. J Bone Miner Res 24(9):1572–1585

    Article  CAS  PubMed  Google Scholar 

  28. Matzelle MM, Gallant MA, Condon KW, Walsh NC, Manning CA, Stein GS, Lian JB, Burr DB, Gravallese EM (2012) Resolution of inflammation induces osteoblast function and regulates the Wnt signaling pathway. Arthritis Rheum 64(5):1540–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Solomon DH, Finkelstein JS, Shadick N, LeBoff MS, Winalski CS, Stedman M, Glass R, Brookhart MA, Weinblatt ME, Gravallese EM (2009) The relationship between focal erosions and generalized osteoporosis in postmenopausal women with rheumatoid arthritis. Arthritis Rheum 60(6):1624–1631

    Article  PubMed  PubMed Central  Google Scholar 

  30. Benjamin M, McGonagle D (2009) Basic concepts of enthesis biology and immunology. J Rheumatol Suppl 83:12–13

    Article  PubMed  Google Scholar 

  31. Lories RJ, Derese I, de Bari C, Luyten FP (2007) Evidence for uncoupling of inflammation and joint remodeling in a mouse model of spondylarthritis. Arthritis Rheum 56(2):489–497

    Article  PubMed  Google Scholar 

  32. Robinson PC, Brown MA (2014) Genetics of ankylosing spondylitis. Mol Immunol 57(1):2–11

    Article  CAS  PubMed  Google Scholar 

  33. Yeremenko N, Paramarta JE, Baeten D (2014) The interleukin-23/interleukin-17 immune axis as a promising new target in the treatment of spondyloarthritis. Curr Opin Rheumatol 26(4):361–370

    Article  CAS  PubMed  Google Scholar 

  34. Sherlock JP, Joyce-Shaikh B, Turner SP, Chao CC, Sathe M, Grein J, Gorman DM, Bowman EP, McClanahan TK, Yearley JH, Eberl G, Buckley CD, Kastelein RA, Pierce RH, Laface DM, Cua DJ (2012) IL-23 induces spondyloarthropathy by acting on ROR-gammat + CD3 + CD4-CD8- entheseal resident T cells. Nat Med 18(7):1069–1076

    Article  CAS  PubMed  Google Scholar 

  35. Sims NA, Martin TJ (2015) Coupling signals between the osteoclast and osteoblast: How are messages transmitted between these temporary visitors to the bone surface? Front Endocrinol (Lausanne) 6:41

    Google Scholar 

  36. Nakagawa H, Takagi K, Kitaoka M, Iyama KI, Usuku G (1993) Influence of monocyte-macrophage lineage cells on alkaline phosphatase activity of developing osteoblasts derived from rat bone marrow stromal cells. Nippon Seikeigeka Gakkai Zasshi 67(5):480–489

    CAS  PubMed  Google Scholar 

  37. Rifas L, Cheng SL, Shen V, Peck WA (1989) Monokines produced by macrophages stimulate the growth of osteoblasts. Connect Tissue Res 23(2-3):163–178

    Article  CAS  PubMed  Google Scholar 

  38. Champagne CM, Takebe J, Offenbacher S, Cooper LF (2002) Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone 30(1):26–31

    Article  CAS  PubMed  Google Scholar 

  39. Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, Maylin ER, Ripoll VM, Hume DA, Pettit AR (2008) Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181(2):1232–1244

    Article  CAS  PubMed  Google Scholar 

  40. Chan JK, Glass GE, Ersek A, Freidin A, Williams GA, Gowers K, Espirito Santo AI, Jeffery R, Otto WR, Poulsom R, Feldmann M, Rankin SM, Horwood NJ, Nanchahal J (2015) Low-dose TNF augments fracture healing in normal and osteoporotic bone by up-regulating the innate immune response. EMBO Mol Med 7(5):547–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alexander KA, Chang MK, Maylin ER, Kohler T, Muller R, Wu AC, Van Rooijen N, Sweet MJ, Hume DA, Raggatt LJ, Pettit AR (2011) Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res 26(7):1517–1532

    Article  CAS  PubMed  Google Scholar 

  42. Raggatt LJ, Wullschleger ME, Alexander KA, Wu AC, Millard SM, Kaur S, Maugham ML, Gregory LS, Steck R, Pettit AR (2014) Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification. Am J Pathol 184(12):3192–3204

    Article  CAS  PubMed  Google Scholar 

  43. Wu X, Xu W, Feng X, He Y, Liu X, Gao Y, Yang S, Shao Z, Yang C, Ye Z (2015) TNF-a mediated inflammatory macrophage polarization contributes to the pathogenesis of steroid-induced osteonecrosis in mice. Int J Immunopathol Pharmacol 28(3):351–361

    Article  CAS  PubMed  Google Scholar 

  44. Nicolaidou V, Wong MM, Redpath AN, Ersek A, Baban DF, Williams LM, Cope AP, Horwood NJ (2012) Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation. PLoS One 7(7):e39871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guihard P, Danger Y, Brounais B, David E, Brion R, Delecrin J, Richards CD, Chevalier S, Redini F, Heymann D, Gascan H, Blanchard F (2012) Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling. Stem Cells 30(4):762–772

    Article  CAS  PubMed  Google Scholar 

  46. Fernandes TJ, Hodge JM, Singh PP, Eeles DG, Collier FM, Holten I, Ebeling PR, Nicholson GC, Quinn JM (2013) Cord blood-derived macrophage-lineage cells rapidly stimulate osteoblastic maturation in mesenchymal stem cells in a glycoprotein-130 dependent manner. PLoS One 8(9):e73266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zarling JM, Shoyab M, Marquardt H, Hanson MB, Lioubin MN, Todaro GJ (1986) Oncostatin M: a growth regulator produced by differentiated histiocytic lymphoma cells. Proc Natl Acad Sci U S A 83(24):9739–9743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Malik N, Haugen HS, Modrell B, Shoyab M, Clegg CH (1995) Developmental abnormalities in mice transgenic for bovine oncostatin M. Mol Cell Biol 15(5):2349–2358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. de Hooge AS, van de Loo FA, Bennink MB, de Jong DS, Arntz OJ, Lubberts E, Richards CD, vandDen Berg WB (2002) Adenoviral transfer of murine oncostatin M elicits periosteal bone apposition in knee joints of mice, despite synovial inflammation and up-regulated expression of interleukin-6 and receptor activator of nuclear factor-kappa B ligand. Am J Pathol 160(5):1733–1743

    Article  PubMed  PubMed Central  Google Scholar 

  50. Walker EC, McGregor NE, Poulton IJ, Solano M, Pompolo S, Fernandes TJ, Constable MJ, Nicholson GC, Zhang JG, Nicola NA, Gillespie MT, Martin TJ, Sims NA (2010) Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. J Clin Invest 120(2):582–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Levy JB, Schindler C, Raz R, Levy DE, Baron R, Horowitz MC (1996) Activation of the JAK-STAT signal transduction pathway by oncostatin-M cultured human and mouse osteoblastic cells. Endocrinology 137(4):1159–1165

    CAS  PubMed  Google Scholar 

  52. Bellido T, Borba VZ, Roberson P, Manolagas SC (1997) Activation of the Janus kinase/STAT (signal transducer and activator of transcription) signal transduction pathway by interleukin-6-type cytokines promotes osteoblast differentiation. Endocrinology 138(9):3666–3676

    CAS  PubMed  Google Scholar 

  53. Fujio Y, Matsuda T, Oshima Y, Maeda M, Mohri T, Ito T, Takatani T, Hirata M, Nakaoka Y, Kimura R, Kishimoto T, Azuma J (2004) Signals through gp130 upregulate Wnt5a and contribute to cell adhesion in cardiac myocytes. FEBS Lett 573(1-3):202–206

    Article  CAS  PubMed  Google Scholar 

  54. Katoh M (2007) STAT3-induced WNT5A signaling loop in embryonic stem cells, adult normal tissues, chronic persistent inflammation, rheumatoid arthritis and cancer. Int J Mol Med 19(2):273–278

    CAS  PubMed  Google Scholar 

  55. Botelho FM, Edwards DR, Richards CD (1998) Oncostatin M stimulates c-Fos to bind a transcriptionally responsive AP-1 element within the tissue inhibitor of metalloproteinase-1 promoter. J Biol Chem 273(9):5211–5218

    Article  CAS  PubMed  Google Scholar 

  56. Guihard P, Boutet MA, Brounais-Le Royer B, Gamblin AL, Amiaud J, Renaud A, Berreur M, Redini F, Heymann D, Layrolle P, Blanchard F (2015) Oncostatin m, an inflammatory cytokine produced by macrophages, supports intramembranous bone healing in a mouse model of tibia injury. Am J Pathol 185(3):765–775

    Article  CAS  PubMed  Google Scholar 

  57. Hui W, Rowan AD, Richards CD, Cawston TE (2003) Oncostatin M in combination with tumor necrosis factor alpha induces cartilage damage and matrix metalloproteinase expression in vitro and in vivo. Arthritis Rheum 48(12):3404–3418

    Article  CAS  PubMed  Google Scholar 

  58. Ni J, Yuan XM, Yao Q, Peng LB (2015) OSM is overexpressed in knee osteoarthritis and Notch signaling is involved in the effects of OSM on MC3T3-E1 cell proliferation and differentiation. Int J Mol Med 35(6):1755–1760

    CAS  PubMed  Google Scholar 

  59. Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37(12):1445–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzon IM, Nepomnaschy I, Costa H, Canones C, Raiden S, Vermeulen M, Geffner JR (2010) Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 5(2):e9252

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15(1):42–49

    Article  CAS  PubMed  Google Scholar 

  62. Tasso R, Ulivi V, Reverberi D, Lo Sicco C, Descalzi F, Cancedda R (2013) In vivo implanted bone marrow-derived mesenchymal stem cells trigger a cascade of cellular events leading to the formation of an ectopic bone regenerative niche. Stem Cells Dev 22(24):3178–3191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kawaguchi H, Pilbeam CC, Harrison JR, Raisz LG (1995) The role of prostaglandins in the regulation of bone metabolism. Clin Orthop Relat Res 313:36–46

    PubMed  Google Scholar 

  64. Li L, Pettit AR, Gregory LS, Forwood MR (2006) Regulation of bone biology by prostaglandin endoperoxide H synthases (PGHS): a rose by any other name. Cytokine Growth Factor Rev 17(3):203–216

    Article  PubMed  Google Scholar 

  65. Xie C, Ming X, Wang Q, Schwarz EM, Guldberg RE, O’Keefe RJ, Zhang X (2008) COX-2 from the injury milieu is critical for the initiation of periosteal progenitor cell mediated bone healing. Bone 43(6):1075–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nagata T, Kaho K, Nishikawa S, Shinohara H, Wakano Y, Ishida H (1994) Effect of prostaglandin E2 on mineralization of bone nodules formed by fetal rat calvarial cells. Calcif Tissue Int 55(6):451–457

    Article  CAS  PubMed  Google Scholar 

  67. Ninomiya T, Hosoya A, Hiraga T, Koide M, Yamaguchi K, Oida H, Arai Y, Sahara N, Nakamura H, Ozawa H (2011) Prostaglandin E(2) receptor EP(4)-selective agonist (ONO-4819) increases bone formation by modulating mesenchymal cell differentiation. Eur J Pharmacol 650(1):396–402

    Article  CAS  PubMed  Google Scholar 

  68. Weinreb M, Suponitzky I, Keila S (1997) Systemic administration of an anabolic dose of PGE2 in young rats increases the osteogenic capacity of bone marrow. Bone 20(6):521–526

    Article  CAS  PubMed  Google Scholar 

  69. Repovic P, Benveniste EN (2002) Prostaglandin E2 is a novel inducer of oncostatin-M expression in macrophages and microglia. J Neurosci 22(13):5334–5343

    CAS  PubMed  Google Scholar 

  70. Fakhry M, Hamade E, Badran B, Buchet R, Magne D (2013) Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J Stem Cells 5(4):136–148

    Article  PubMed  PubMed Central  Google Scholar 

  71. James AW (2013) Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica (Cairo) 2013:684736

    Google Scholar 

  72. Johnson RW, Brennan HJ, Vrahnas C, Poulton IJ, McGregor NE, Standal T, Walker EC, Koh TT, Nguyen H, Walsh NC, Forwood MR, Martin TJ, Sims NA (2014) The primary function of gp130 signaling in osteoblasts is to maintain bone formation and strength, rather than promote osteoclast formation. J Bone Miner Res 29(6):1492–1505

    Article  CAS  PubMed  Google Scholar 

  73. Haversath M, Catelas I, Li X, Tassemeier T, Jager M (2012) PGE2 and BMP-2 in bone and cartilage metabolism: 2 intertwining pathways. Can J Physiol Pharmacol 90(11):1434–1445

    Article  CAS  PubMed  Google Scholar 

  74. Wu AC, Raggatt LJ, Alexander KA, Pettit AR (2013) Unraveling macrophage contributions to bone repair. Bonekey Rep 2:373

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Professor Horwood is a Senior Research Fellow of Arthritis Research UK (Grant reference 20372). Thanks to Dr Vicky Nicolaidou for figures from her thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole J. Horwood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horwood, N.J. Macrophage Polarization and Bone Formation: A review. Clinic Rev Allerg Immunol 51, 79–86 (2016). https://doi.org/10.1007/s12016-015-8519-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-015-8519-2

Keywords

Navigation