Skip to main content

Advertisement

Log in

Potential in exosome-based targeted nano-drugs and delivery vehicles for posterior ocular disease treatment: from barriers to therapeutic application

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Posterior ocular disease, a disease that accounts for 55% of all ocular diseases, can contribute to permanent vision loss if left without treatment. Due to the special structure of the eye, various obstacles make it difficult for drugs to reach lesions in the posterior ocular segment. Therefore, the development of highly permeable targeted drugs and delivery systems is particularly important. Exosomes are a class of extracellular vesicles at 30–150 nm, which are secreted by various cells, tissues, and body fluids. They carry various signaling molecules, thus endowing them with certain physiological functions. In this review, we describe the ocular barriers and the biogenesis, isolation, and engineering of exosomes, as exosomes not only have pharmacological effects but also are good nanocarriers with targeted properties. Moreover, their biocompatibility and immunogenicity are better than synthetic nanocarriers. Most importantly, they may have the ability to pass through the blood–eye barrier. Thus, they may be developed as both targeted nano-drugs and nano-delivery vehicles for the treatment of posterior ocular diseases. We focus on the current status and potential application of exosomes as targeted nano-drugs and nano-delivery vehicles in posterior ocular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Juliana FR, Kesse S, Boakye-Yiadom KO, Veroniaina H, Wang HH, Sun MH (2019) Promising approach in the treatment of glaucoma using nanotechnology and nanomedicine-based systems. Molecules. https://doi.org/10.3390/molecules24203805

    Article  PubMed  PubMed Central  Google Scholar 

  2. Joseph RR, Venkatraman SS (2017) Drug delivery to the eye: what benefits do nanocarriers offer? Nanomedicine 12:683–702. https://doi.org/10.2217/nnm-2016-0379

    Article  CAS  PubMed  Google Scholar 

  3. Nayak K, Misra M (2018) A review on recent drug delivery systems for posterior segment of eye. Biomed Pharmacother 107:1564–1582. https://doi.org/10.1016/j.biopha.2018.08.138

    Article  CAS  PubMed  Google Scholar 

  4. Wang R, Gao Y, Liu AC, Zhai GX (2021) A review of nanocarrier-mediated drug delivery systems for posterior segment eye disease: challenges analysis and recent advances. J Drug Target 29:687–702. https://doi.org/10.1080/1061186x.2021.1878366

    Article  CAS  PubMed  Google Scholar 

  5. Naidorf-Rosenblatt H, Landau-Part D, Moisseiev J, Alhalel A, Huna-Baron R, Skaat A, Pilus S, Levi L, Leshno A (2022) Ocular surface temperature differences in retinal vascular diseases. Retina-J Retinal Vitreous Dis 42:152–158. https://doi.org/10.1097/IAE.0000000000003278

    Article  Google Scholar 

  6. Abdulla D, Ali Y, Menezo V, Taylor SRJ (2022) The use of sustained release intravitreal steroid implants in non-infectious uveitis affecting the posterior segment of the eye. Ophthalmol Therapy 11:479–487. https://doi.org/10.1007/s40123-022-00456-4

    Article  Google Scholar 

  7. Moisseiev E, Loewenstein A (2017) Drug delivery to the posterior segment of the eye. Dev Ophthalmol 58:87–101. https://doi.org/10.1159/000455276

    Article  PubMed  Google Scholar 

  8. Weng YH, Liu J, Jin SB, Guo WS, Liang XJ, Hua ZB (2017) Nanotechnology-based strategies for treatment of ocular disease. Acta Pharma Sinica B 7:281–291. https://doi.org/10.1016/j.apsb.2016.09.001

    Article  Google Scholar 

  9. del Amo EM, Rimpela AK, Heikkinen E, Kari OK, Ramsay E, Lajunen T, Schmitt M, Pelkonen L, Bhattacharya M, Richardson D, Subrizi A, Turunen T, Reinisalo M, Itkonen J, Toropainen E, Casteleijn M, Kidron H, Antopolsky M, Vellonen KS, Ruponen M, Urtti A (2017) Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res 57:134–185. https://doi.org/10.1016/j.preteyeres.2016.12.001

    Article  CAS  PubMed  Google Scholar 

  10. Yasin MN, Svirskis D, Seyfoddin A, Rupenthal ID (2014) Implants for drug delivery to the posterior segment of the eye: a focus on stimuli-responsive and tunable release systems. J Control Release 196:208–221. https://doi.org/10.1016/j.jconrel.2014.09.030

    Article  CAS  PubMed  Google Scholar 

  11. Qamar Z, Qizilbash FF, Iqubal MK, Ali A, Narang JK, Ali J, Baboota S (2019) Nano-based drug delivery system: recent strategies for the treatment of ocular disease and future perspective. Recent Pat Drug Deliv Formul 13:246–254. https://doi.org/10.2174/1872211314666191224115211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Srinivasarao DA, Lohiya G, Katti DS (2019) Fundamentals, challenges, and nanomedicine-based solutions for ocular diseases. Wiley Interdiscip Rev-Nanomed Nanobiotechnol. https://doi.org/10.1002/wnan.1548

    Article  PubMed  Google Scholar 

  13. Xu TT, Xu XY, Gu Y, Fang L, Cao F (2018) Functional intercalated nanocomposites with chitosan-glutathione-glycylsarcosine and layered double hydroxides for topical ocular drug delivery. Int J Nanomed 13:917–937. https://doi.org/10.2147/ijn.S148104

    Article  CAS  Google Scholar 

  14. Bonilla L, Espina M, Severino P, Cano A, Ettcheto M, Camins A, Garcia ML, Souto EB, Sanchez-Lopez E (2022) Lipid nanoparticles for the posterior eye segment. Pharmaceutics. https://doi.org/10.3390/pharmaceutics14010090

    Article  Google Scholar 

  15. Vashisht M, Rani P, Onteru SK, Singh D (2017) Curcumin encapsulated in milk exosomes resists human digestion and possesses enhanced intestinal permeability in vitro. Appl Biochem Biotechnol 183:993–1007. https://doi.org/10.1007/s12010-017-2478-4

    Article  CAS  PubMed  Google Scholar 

  16. van den Boorn JG, Schlee M, Coch C, Hartmann G (2011) SiRNA delivery with exosome nanoparticles. Nat Biotechnol 29:325–326. https://doi.org/10.1038/nbt.1830

    Article  CAS  PubMed  Google Scholar 

  17. Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, Kelly PM, Aberg C, Mahon E, Dawson KA (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8:137–143. https://doi.org/10.1038/nnano.2012.237

    Article  CAS  PubMed  Google Scholar 

  18. Stewart JM, Keselowsky BG (2017) Combinatorial drug delivery approaches for immunomodulation. Adv Drug Deliv Rev 114:161–174. https://doi.org/10.1016/j.addr.2017.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liao W, Du Y, Zhang CH, Pan FW, Yao Y, Zhang T, Peng Q (2019) Exosomes: the next generation of endogenous nanomaterials for advanced drug delivery and therapy. Acta Biomater 86:1–14. https://doi.org/10.1016/j.actbio.2018.12.045

    Article  CAS  PubMed  Google Scholar 

  20. Record M, Subra C, Silvente-Poirot S, Poirot M (2011) Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol 81:1171–1182. https://doi.org/10.1016/j.bcp.2011.02.011

    Article  CAS  PubMed  Google Scholar 

  21. Yu B, Li XR, Zhang XM (2020) Mesenchymal stem cell-derived extracellular vesicles as a new therapeutic strategy for ocular diseases. World J Stem Cells 12:178–187. https://doi.org/10.4252/wjsc.v12.i3.178

    Article  PubMed  PubMed Central  Google Scholar 

  22. Harrell CR, Markovic BS, Fellabaum C, Arsenijevic A, Djonov V, Arsenijevic N, Volarevic V (2018) Therapeutic potential of mesenchymal stem cell-derived exosomes in the treatment of eye diseases. Adv Exp Med Biol 1089:47–57. https://doi.org/10.1007/5584_2018_219

    Article  CAS  PubMed  Google Scholar 

  23. Zhu XH, Badawi M, Pomeroy S, Sutaria DS, Xie ZL, Baek A, Jiang JM, Elgamal OA, Mo XK, La Perle K, Chalmers J, Schmittgen TD, Phelps MA (2017) Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells. J Extracellular Vesicles. https://doi.org/10.1080/20013078.2017.1324730

    Article  Google Scholar 

  24. Quah BJC, O’Neill HC (2005) The immunogenicity of dendritic cell-derived exosomes. Blood Cells Mol Dis 35:94–110. https://doi.org/10.1016/j.bcmd.2005.05.002

    Article  CAS  PubMed  Google Scholar 

  25. Zheng MN, Huang M, Ma XY, Chen HZ, Gao XL (2019) Harnessing exosomes for the development of brain drug delivery systems. Bioconjug Chem 30:994–1005. https://doi.org/10.1021/acs.bioconjchem.9b00085

    Article  CAS  PubMed  Google Scholar 

  26. Manfré L, Midiri M, Giuffré G, Mangiameli A, Cardella G, Ponte F, De Maria M, Lagalla R (1997) Blood-ocular barrier damage: use of contrast-enhanced MRI. Eur Radiol 7:110–114. https://doi.org/10.1007/s003300050121

    Article  PubMed  Google Scholar 

  27. Desalvo MK, Mayer N, Mayer F, Bainton RJ (2011) Physiologic and anatomic characterization of the brain surface glia barrier of drosophila. Glia 59:1322–1340. https://doi.org/10.1002/glia.21147

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cattelotte J, Andre P, Ouellet M, Bourasset F, Scherrmann JM, Cisternino S (2008) In situ mouse carotid perfusion model: glucose and cholesterol transport in the eye and brain. J Cereb Blood Flow Metab 28:1449–1459. https://doi.org/10.1038/jcbfm.2008.34

    Article  PubMed  Google Scholar 

  29. Huang CJ, Quinn D, Sadovsky Y, Suresh S, Hsia KJ (2017) Formation and size distribution of self-assembled vesicles. Proc Natl Acad Sci USA 114:2910–2915. https://doi.org/10.1073/pnas.1702065114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Amrite AC, Edelhauser HF, Singh SR, Kompella UB (2008) Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration. Mol Vis 14:150–160

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsai CH, Wang PY, Lin IC, Huang H, Liu GS, Tseng CL (2018) Ocular drug delivery: role of degradable polymeric nanocarriers for ophthalmic application. Int J Mol Sci. https://doi.org/10.3390/ijms19092830

    Article  PubMed  PubMed Central  Google Scholar 

  32. Boddu SH, Gupta H, Patel S (2014) Drug delivery to the back of the eye following topical administration: an update on research and patenting activity. Recent Pat Drug Deliv Formul 8:27–36. https://doi.org/10.2174/1872211308666140130093301

    Article  CAS  PubMed  Google Scholar 

  33. Glasgow BJ (2020) Evidence for phospholipids on the surface of human tears. Investig Ophthalmol Vis Sci. https://doi.org/10.1167/iovs.61.14.19

    Article  Google Scholar 

  34. Fernandes AR, Sanchez-Lopez E, Santini A, Santos Td, Garcia ML, Silva AM, Souto EB (2021) Mono- and dicationic DABCO/quinuclidine composed nanomaterials for the loading of steroidal drug: 32 factorial design and physicochemical characterization. Nanomaterials 11:2758. https://doi.org/10.3390/nano11102758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ruponen M, Urtti A (2015) Undefined role of mucus as a barrier in ocular drug delivery. Eur J Pharm Biopharm 96:442–446. https://doi.org/10.1016/j.ejpb.2015.02.032

    Article  CAS  PubMed  Google Scholar 

  36. Awwad S, Ahmed A, Sharma G, Heng JS, Khaw PT, Brocchini S, Lockwood A (2017) Principles of pharmacology in the eye. Br J Pharmacol 174:4205–4223. https://doi.org/10.1111/bph.14024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. DelMonte DW, Kim T (2011) Anatomy and physiology of the cornea. J Cataract Refract Surg 37:588–598. https://doi.org/10.1016/j.jcrs.2010.12.037

    Article  PubMed  Google Scholar 

  38. Sridhar MS (2018) Anatomy of cornea and ocular surface. Indian J Ophthalmol 66:190–194. https://doi.org/10.4103/ijo.IJO_646_17

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang YQ, Zhang WJ, Liu W, Hu XJ, Zhou GD, Cui L, Cao Y (2008) Tissue engineering of corneal stromal layer with dermal fibroblasts: phenotypic and functional switch of differentiated cells in cornea. Tissue Eng Part A 14:295–303. https://doi.org/10.1089/tea.2007.0200

    Article  CAS  PubMed  Google Scholar 

  40. Makuloluwa AK, Hamill KJ, Rauz S, Bosworth L, Haneef A, Romano V, Williams RL, Dartt DA, Kaye SB (2021) The conjunctival extracellular matrix, related disorders and development of substrates for conjunctival restoration. Ocul Surf. https://doi.org/10.1016/j.jtos.2021.05.011

    Article  PubMed  Google Scholar 

  41. Gipson IK (2016) Goblet cells of the conjunctiva: a review of recent findings. Prog Retin Eye Res 54:49–63. https://doi.org/10.1016/j.preteyeres.2016.04.005

    Article  PubMed  PubMed Central  Google Scholar 

  42. Forrester JV, Dick AD, McMenamin PG, Roberts F, Pearlman E (2016) The eye: basic sciences in practice, 4th edn. Elsevier

    Google Scholar 

  43. Wang YY, Xu XY, Gu Y, Cheng YJ, Cao F (2018) Recent advance of nanoparticle-based topical drug delivery to the posterior segment of the eye. Expert Opin Drug Deliv 15:687–701. https://doi.org/10.1080/17425247.2018.1496080

    Article  CAS  PubMed  Google Scholar 

  44. Chen W, Tan X, Chen X (2017) Anatomy and physiology of the crystalline lens. In: Liu Y (ed) Pediatric lens diseases. Springer, Singapore, pp 21–28

    Chapter  Google Scholar 

  45. Augusteyn RC (2010) On the growth and internal structure of the human lens. Exp Eye Res 90:643–654. https://doi.org/10.1016/j.exer.2010.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Atta G, Tempfer H, Kaser-Eichberger A, Guo YW, Schroedl F, Traweger A, Heindl LM (2020) The lymphangiogenic and hemangiogenic privilege of the human sclera. Ann Anatomy-Anatomischer Anzeiger. https://doi.org/10.1016/j.aanat.2020.151485

    Article  Google Scholar 

  47. Mahaling B, Katti DS (2016) Physicochemical properties of core-shell type nanoparticles govern their spatiotemporal biodistribution in the eye. Nanomed-Nanotechnol Biol Med 12:2149–2160. https://doi.org/10.1016/j.nano.2016.05.017

    Article  CAS  Google Scholar 

  48. Hancock SE, Wan CR, Fisher NE, Andino RV, Ciulla TA (2021) Biomechanics of suprachoroidal drug delivery: from benchtop to clinical investigation in ocular therapies. Expert Opin Drug Deliv 18:777–788. https://doi.org/10.1080/17425247.2021.1867532

    Article  CAS  PubMed  Google Scholar 

  49. Thrimawithana TR, Young S, Bunt CR, Green C, Alany RG (2011) Drug delivery to the posterior segment of the eye. Drug Discov Today 16:270–277. https://doi.org/10.1016/j.drudis.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  50. Kim SH, Lutz RJ, Wang NS, Robinson MR (2007) Transport barriers in transscleral drug delivery for retinal diseases. Ophthalmic Res 39:244–254. https://doi.org/10.1159/000108117

    Article  CAS  PubMed  Google Scholar 

  51. Velagaleti PR, Buonarati MH (2014) Challenges and strategies in drug residue measurement (bioanalysis) of ocular tissues. Methods Pharmacol Toxicol. https://doi.org/10.1007/7653_2013_6

    Article  Google Scholar 

  52. Grassiri B, Zambito Y, Bernkop-Schnurch A (2021) Strategies to prolong the residence time of drug delivery systems on ocular surface. Adv Colloid Interface Sci. https://doi.org/10.1016/j.cis.2020.102342

    Article  PubMed  Google Scholar 

  53. Coca-Prados M (2014) The blood-aqueous barrier in health and disease. J Glaucoma 23:S36–S38. https://doi.org/10.1097/ijg.0000000000000107

    Article  PubMed  Google Scholar 

  54. Lee J, Pelis RM (2016) drug transport by the blood-aqueous humor barrier of the eye. Drug Metab Dispos 44:1675–1681. https://doi.org/10.1124/dmd.116.069369

    Article  CAS  PubMed  Google Scholar 

  55. Yemanyi F, Bora K, Blomfield AK, Wang Z, Chen J (2021) Wnt signaling in inner blood-retinal barrier maintenance. Int J Mol Sci. https://doi.org/10.3390/ijms222111877

    Article  PubMed  PubMed Central  Google Scholar 

  56. Spaide RF, Klancnik JM Jr, Cooney MJ (2015) Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 133:45–50. https://doi.org/10.1001/jamaophthalmol.2014.3616

    Article  PubMed  Google Scholar 

  57. Pitkänen L, Ranta VP, Moilanen H, Urtti A (2005) Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity. Invest Ophthalmol Vis Sci 46:641–646. https://doi.org/10.1167/iovs.04-1051

    Article  PubMed  Google Scholar 

  58. Xu HZ, Le YZ (2011) Significance of outer blood-retina barrier breakdown in diabetes and ischemia. Invest Ophthalmol Vis Sci 52:2160–2164. https://doi.org/10.1167/iovs.10-6518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Díaz-Coránguez M, Ramos C, Antonetti DA (2017) The inner blood-retinal barrier: cellular basis and development. Vision Res 139:123–137. https://doi.org/10.1016/j.visres.2017.05.009

    Article  PubMed  PubMed Central  Google Scholar 

  60. Harrell CR, Simovic Markovic B, Fellabaum C, Arsenijevic A, Djonov V, Arsenijevic N, Volarevic V (2018) Therapeutic potential of mesenchymal stem cell-derived exosomes in the treatment of eye diseases. Adv Exp Med Biol 1089:47–57. https://doi.org/10.1007/5584_2018_219

    Article  CAS  PubMed  Google Scholar 

  61. Gurung S, Perocheau D, Touramanidou L, Baruteau J (2021) The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal 19:47. https://doi.org/10.1186/s12964-021-00730-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mathieu M, Martin-Jaular L, Lavieu G, Théry C (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21:9–17. https://doi.org/10.1038/s41556-018-0250-9

    Article  CAS  PubMed  Google Scholar 

  63. Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97:329–339. https://doi.org/10.1083/jcb.97.2.329

    Article  CAS  PubMed  Google Scholar 

  64. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation: association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420. https://doi.org/10.1016/S0021-9258(18)48095-7

    Article  CAS  PubMed  Google Scholar 

  65. Lin H, Chen H, Zhao X, Ding T, Wang Y, Chen Z, Tian Y, Zhang P, Shen Y (2022) Advances of exosomes in periodontitis treatment. J Transl Med 20:279. https://doi.org/10.1186/s12967-022-03487-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH (2019) Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. https://doi.org/10.3390/cells8040307

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science. https://doi.org/10.1126/science.aau6977

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hanson PI, Cashikar A (2012) Multivesicular body morphogenesis. Annu Rev Cell Dev Biol 28:337–362. https://doi.org/10.1146/annurev-cellbio-092910-154152

    Article  CAS  PubMed  Google Scholar 

  69. Skotland T, Sandvig K, Llorente A (2017) Lipids in exosomes: current knowledge and the way forward. Prog Lipid Res 66:30–41. https://doi.org/10.1016/j.plipres.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  70. Zhang Y, Liu Y, Liu H, Tang WH (2019) Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 9:19. https://doi.org/10.1186/s13578-019-0282-2

    Article  PubMed  PubMed Central  Google Scholar 

  71. Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289. https://doi.org/10.1146/annurev-cellbio-101512-122326

    Article  CAS  PubMed  Google Scholar 

  72. Nasser MI, Masood M, Adlat S, Gang D, Zhu S, Li G, Li N, Chen J, Zhu P (2021) Mesenchymal stem cell-derived exosome microRNA as therapy for cardiac ischemic injury. Biomed Pharmacother 143:112118. https://doi.org/10.1016/j.biopha.2021.112118

    Article  CAS  PubMed  Google Scholar 

  73. Yang Y, Yuan L, Du X, Zhou K, Qin L, Wang L, Yang M, Wu M, Zheng Z, Xiang Y, Qu X, Liu H, Qin X, Liu C (2021) Involvement of epithelia-derived exosomes in chronic respiratory diseases. Biomed Pharmacother 143:112189. https://doi.org/10.1016/j.biopha.2021.112189

    Article  CAS  PubMed  Google Scholar 

  74. Ma D, Zhang QY, Rong HM, Zhai K, Tong ZH (2022) Proteomic profiling and functional analysis of B cell-derived exosomes upon pneumocystis infection. J Immunol Res 2022:5187166. https://doi.org/10.1155/2022/5187166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen SW, Zhu SQ, Pei X, Qiu BQ, Xiong D, Long X, Lin K, Lu F, Xu JJ, Wu YB (2021) Cancer cell-derived exosomal circUSP7 induces CD8(+) T cell dysfunction and anti-PD1 resistance by regulating the miR-934/SHP2 axis in NSCLC. Mol Cancer 20:144. https://doi.org/10.1186/s12943-021-01448-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wu X, Xu X, Xiang Y, Fan D, An Q, Yue G, Jin Z, Ding J, Hu Y, Du Q, Xu J, Xie R (2022) Exosome-mediated effects and applications in inflammatory diseases of the digestive system. Eur J Med Res 27:163. https://doi.org/10.1186/s40001-022-00792-y

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhang X, Xu Y, Ma L, Yu K, Niu Y, Xu X, Shi Y, Guo S, Xue X, Wang Y, Qiu S, Cui J, Wang H, Tian X, Miao Y, Meng F, Qiao Y, Yu Y, Wang J (2022) Essential roles of exosome and circRNA_101093 on ferroptosis desensitization in lung adenocarcinoma. Cancer Commun 42:287–313. https://doi.org/10.1002/cac2.12275

    Article  Google Scholar 

  78. Wang L, Wang J, Wang Z, Zhou J, Zhang Y (2021) Higher urine exosomal miR-193a is associated with a higher probability of primary focal segmental glomerulosclerosis and an increased risk of poor prognosis among children with nephrotic syndrome. Front Cell Dev Biol 9:727370. https://doi.org/10.3389/fcell.2021.727370

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bae IS, Kim SH (2021) Milk exosome-derived microRNA-2478 suppresses melanogenesis through the Akt-GSK3β pathway. Cells. https://doi.org/10.3390/cells10112848

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hofmann L, Abou Kors T, Ezić J, Niesler B, Röth R, Ludwig S, Laban S, Schuler PJ, Hoffmann TK, Brunner C, Medyany V, Theodoraki MN (2022) Comparison of plasma- and saliva-derived exosomal miRNA profiles reveals diagnostic potential in head and neck cancer. Front Cell Dev Biol 10:971596. https://doi.org/10.3389/fcell.2022.971596

    Article  PubMed  PubMed Central  Google Scholar 

  81. Crenshaw BJ, Sims B, Matthews QL (2018) Biological function of exosomes as diagnostic markers and therapeutic delivery vehicles in carcinogenesis and infectious diseases. Nanomedicines. https://doi.org/10.5772/intechopen.80225

    Article  Google Scholar 

  82. Yang H, Yang S, Shen H, Wu S, Ruan J, Lyu G (2021) Construction of the amniotic fluid-derived exosomal ceRNA network associated with ventricular septal defect. Genomics 113:4293–4302. https://doi.org/10.1016/j.ygeno.2021.11.003

    Article  CAS  PubMed  Google Scholar 

  83. Thakur A, Parra DC, Motallebnejad P, Brocchi M, Chen HJ (2022) Exosomes: small vesicles with big roles in cancer, vaccine development, and therapeutics. Bioact Mater 10:281–294. https://doi.org/10.1016/j.bioactmat.2021.08.029

    Article  CAS  PubMed  Google Scholar 

  84. Chen J, Li P, Zhang T, Xu Z, Huang X, Wang R, Du L (2021) Review on strategies and technologies for exosome isolation and purification. Front Bioeng Biotechnol 9:811971. https://doi.org/10.3389/fbioe.2021.811971

    Article  PubMed  Google Scholar 

  85. Lin S, Yu Z, Chen D, Wang Z, Miao J, Li Q, Zhang D, Song J, Cui D (2020) Progress in microfluidics-based exosome separation and detection technologies for diagnostic applications. Small 16:e1903916. https://doi.org/10.1002/smll.201903916

    Article  CAS  PubMed  Google Scholar 

  86. Zhang MD, Jin K, Gao L, Zhang ZK, Li F, Zhou FF, Zhang L (2018) Methods and technologies for exosome isolation and characterization. Small Methods. https://doi.org/10.1002/smtd.201800021

    Article  Google Scholar 

  87. Cao F, Gao Y, Chu Q, Wu Q, Zhao L, Lan T, Zhao L (2019) Proteomics comparison of exosomes from serum and plasma between ultracentrifugation and polymer-based precipitation kit methods. Electrophoresis 40:3092–3098. https://doi.org/10.1002/elps.201900295

    Article  CAS  PubMed  Google Scholar 

  88. Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P (2020) Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int J Nanomed 15:6917–6934. https://doi.org/10.2147/ijn.S264498

    Article  CAS  Google Scholar 

  89. Liu WZ, Ma ZJ, Kang XW (2022) Current status and outlook of advances in exosome isolation. Anal Bioanal Chem 414:7123–7141. https://doi.org/10.1007/s00216-022-04253-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang J, Chen D, Ho EA (2021) Challenges in the development and establishment of exosome-based drug delivery systems. J Control Release 329:894–906. https://doi.org/10.1016/j.jconrel.2020.10.020

    Article  CAS  PubMed  Google Scholar 

  91. Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D (2017) Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin 38:754–763. https://doi.org/10.1038/aps.2017.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Weng Z, Zhang B, Wu C, Yu F, Han B, Li B, Li L (2021) Therapeutic roles of mesenchymal stem cell-derived extracellular vesicles in cancer. J Hematol Oncol 14:136. https://doi.org/10.1186/s13045-021-01141-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liang Y, Duan L, Lu J, Xia J (2021) Engineering exosomes for targeted drug delivery. Theranostics 11:3183–3195. https://doi.org/10.7150/thno.52570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Butreddy A, Kommineni N, Dudhipala N (2021) Exosomes as naturally occurring vehicles for delivery of biopharmaceuticals: insights from drug delivery to clinical perspectives. Nanomaterials. https://doi.org/10.3390/nano11061481

    Article  PubMed  PubMed Central  Google Scholar 

  95. Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM (2015) Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release 205:35–44. https://doi.org/10.1016/j.jconrel.2014.11.029

    Article  CAS  PubMed  Google Scholar 

  96. Lin Y, Lu Y, Li X (2020) Biological characteristics of exosomes and genetically engineered exosomes for the targeted delivery of therapeutic agents. J Drug Target 28:129–141. https://doi.org/10.1080/1061186x.2019.1641508

    Article  CAS  PubMed  Google Scholar 

  97. Kučuk N, Primožič M, Knez Ž, Leitgeb M (2021) Exosomes engineering and their roles as therapy delivery tools, therapeutic targets, and biomarkers. Int J Mol Sci. https://doi.org/10.3390/ijms22179543

    Article  PubMed  PubMed Central  Google Scholar 

  98. Salunkhe S, Dheeraj BM, Chitkara D, Mittal A (2020) Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking: strategies and significance. J Control Release 326:599–614. https://doi.org/10.1016/j.jconrel.2020.07.042

    Article  CAS  PubMed  Google Scholar 

  99. Paskeh MDA, Entezari M, Mirzaei S, Zabolian A, Saleki H, Naghdi MJ, Sabet S, Khoshbakht MA, Hashemi M, Hushmandi K, Sethi G, Zarrabi A, Kumar AP, Tan SC, Papadakis M, Alexiou A, Islam MA, Mostafavi E, Ashrafizadeh M (2022) Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol 15:83. https://doi.org/10.1186/s13045-022-01305-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Han C, Yang J, Sun J, Qin G (2022) Extracellular vesicles in cardiovascular disease: biological functions and therapeutic implications. Pharmacol Ther 233:108025. https://doi.org/10.1016/j.pharmthera.2021.108025

    Article  CAS  PubMed  Google Scholar 

  101. Sun J, Shen H, Shao L, Teng X, Chen Y, Liu X, Yang Z, Shen Z (2020) HIF-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis. Stem Cell Res Ther 11:373. https://doi.org/10.1186/s13287-020-01881-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cano A, Muñoz-Morales Á, Sánchez-López E, Ettcheto M, Souto EB, Camins A, Boada M, Ruíz A (2023) Exosomes-based nanomedicine for neurodegenerative diseases: current insights and future challenges. Pharmaceutics. https://doi.org/10.3390/pharmaceutics15010298

    Article  PubMed  PubMed Central  Google Scholar 

  103. Fan L, Liu C, Chen X, Zheng L, Zou Y, Wen H, Guan P, Lu F, Luo Y, Tan G, Yu P, Chen D, Deng C, Sun Y, Zhou L, Ning C (2022) Exosomes-loaded electroconductive hydrogel synergistically promotes tissue repair after spinal cord injury via immunoregulation and enhancement of myelinated axon growth. Adv Sci 9:e2105586. https://doi.org/10.1002/advs.202105586

    Article  CAS  Google Scholar 

  104. Song Y, Wang B, Zhu X, Hu J, Sun J, Xuan J, Ge Z (2021) Human umbilical cord blood-derived MSCs exosome attenuate myocardial injury by inhibiting ferroptosis in acute myocardial infarction mice. Cell Biol Toxicol 37:51–64. https://doi.org/10.1007/s10565-020-09530-8

    Article  CAS  PubMed  Google Scholar 

  105. Santos P, Almeida F (2021) Exosome-based vaccines: history, current state, and clinical trials. Front Immunol 12:711565. https://doi.org/10.3389/fimmu.2021.711565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhou T, He C, Lai P, Yang Z, Liu Y, Xu H, Lin X, Ni B, Ju R, Yi W, Liang L, Pei D, Egwuagu CE, Liu X (2022) miR-204-containing exosomes ameliorate GVHD-associated dry eye disease. Sci Adv 8:eabj9617. https://doi.org/10.1126/sciadv.abj9617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mathew B, Torres LA, Gamboa Acha L, Tran S, Liu A, Patel R, Chennakesavalu M, Aneesh A, Huang CC, Feinstein DL, Mehraeen S, Ravindran S, Roth S (2021) Uptake and distribution of administered bone marrow mesenchymal stem cell extracellular vesicles in retina. Cells. https://doi.org/10.3390/cells10040730

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zhang F, Guo J, Zhang Z, Qian Y, Wang G, Duan M, Zhao H, Yang Z, Jiang X (2022) Mesenchymal stem cell-derived exosome: a tumor regulator and carrier for targeted tumor therapy. Cancer Lett 526:29–40. https://doi.org/10.1016/j.canlet.2021.11.015

    Article  CAS  PubMed  Google Scholar 

  109. van Lookeren CM, LeCouter J, Yaspan BL, Ye W (2014) Mechanisms of age-related macular degeneration and therapeutic opportunities. J Pathol 232:151–164. https://doi.org/10.1002/path.4266

    Article  Google Scholar 

  110. Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K (2016) Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci 73:1765–1786. https://doi.org/10.1007/s00018-016-2147-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hajrasouliha AR, Jiang G, Lu Q, Lu H, Kaplan HJ, Zhang HG, Shao H (2013) Exosomes from retinal astrocytes contain antiangiogenic components that inhibit laser-induced choroidal neovascularization. J Biol Chem 288:28058–28067. https://doi.org/10.1074/jbc.M113.470765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu Z, Mao X, Yang Q, Zhang X, Xu J, Ma Q, Zhou Y, Da Q, Cai Y, Sopeyin A, Dong Z, Hong M, Caldwell RB, Sodhi A, Huo Y (2022) Suppression of myeloid PFKFB3-driven glycolysis protects mice from choroidal neovascularization. Br J Pharmacol 179:5109–5131. https://doi.org/10.1111/bph.15925

    Article  CAS  PubMed  Google Scholar 

  113. Rohlenova K, Goveia J, García-Caballero M, Subramanian A, Kalucka J, Treps L, Falkenberg KD, de Rooij L, Zheng Y, Lin L, Sokol L, Teuwen LA, Geldhof V, Taverna F, Pircher A, Conradi LC, Khan S, Stegen S, Panovska D, De Smet F, Staal FJT, McLaughlin RJ, Vinckier S, Van Bergen T, Ectors N, De Haes P, Wang J, Bolund L, Schoonjans L, Karakach TK, Yang H, Carmeliet G, Liu Y, Thienpont B, Dewerchin M, Eelen G, Li X, Luo Y, Carmeliet P (2020) Single-cell RNA sequencing maps endothelial metabolic plasticity in pathological angiogenesis. Cell Metab 31:862-877.e14. https://doi.org/10.1016/j.cmet.2020.03.009

    Article  CAS  PubMed  Google Scholar 

  114. Wang Y, Zhang Q, Yang G, Wei Y, Li M, Du E, Li H, Song Z, Tao Y (2021) RPE-derived exosomes rescue the photoreceptors during retina degeneration: an intraocular approach to deliver exosomes into the subretinal space. Drug Deliv 28:218–228. https://doi.org/10.1080/10717544.2020.1870584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Xu W, Wu Y, Hu Z, Sun L, Dou G, Zhang Z, Wang H, Guo C, Wang Y (2019) Exosomes from microglia attenuate photoreceptor injury and neovascularization in an animal model of retinopathy of prematurity. Mol Ther Nucleic Acids 16:778–790. https://doi.org/10.1016/j.omtn.2019.04.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li D, Zhang J, Liu Z, Gong Y, Zheng Z (2021) Human umbilical cord mesenchymal stem cell-derived exosomal miR-27b attenuates subretinal fibrosis via suppressing epithelial-mesenchymal transition by targeting HOXC6. Stem Cell Res Ther 12:24. https://doi.org/10.1186/s13287-020-02064-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yu B, Shao H, Su C, Jiang Y, Chen X, Bai L, Zhang Y, Li Q, Zhang X, Li X (2016) Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1. Sci Rep 6:34562. https://doi.org/10.1038/srep34562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cun Y, Jin Y, Wu D, Zhou L, Zhang C, Zhang S, Yang X, Zuhong W, Zhang P (2022) Exosome in crosstalk between inflammation and angiogenesis: a potential therapeutic strategy for stroke. Mediators Inflamm 2022:7006281. https://doi.org/10.1155/2022/7006281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ansari MA, Thiruvengadam M, Venkidasamy B, Alomary MN, Salawi A, Chung IM, Shariati MA, Rebezov M (2022) Exosome-based nanomedicine for cancer treatment by targeting inflammatory pathways: current status and future perspectives. Semin Cancer Biol 86:678–696. https://doi.org/10.1016/j.semcancer.2022.04.005

    Article  CAS  PubMed  Google Scholar 

  120. Li Q, Pang L, Yang W, Liu X, Su G, Dong Y (2018) Long non-coding RNA of myocardial infarction associated transcript (LncRNA-MIAT) promotes diabetic retinopathy by upregulating transforming growth factor-β1 (TGF-β1) signaling. Med Sci Monit 24:9497–9503. https://doi.org/10.12659/msm.911787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li EH, Huang QZ, Li GC, Xiang ZY, Zhang X (2017) Effects of miRNA-200b on the development of diabetic retinopathy by targeting VEGFA gene. Biosci Rep. https://doi.org/10.1042/bsr20160572

  122. Pardue MT, Allen RS (2018) Neuroprotective strategies for retinal disease. Prog Retin Eye Res 65:50–76. https://doi.org/10.1016/j.preteyeres.2018.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang W, Wang Y, Kong Y (2019) Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1. Invest Ophthalmol Vis Sci 60:294–303. https://doi.org/10.1167/iovs.18-25617

    Article  CAS  PubMed  Google Scholar 

  124. Steinle JJ (2020) Role of HMGB1 signaling in the inflammatory process in diabetic retinopathy. Cell Signal 73:109687. https://doi.org/10.1016/j.cellsig.2020.109687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Moisseiev E, Anderson JD, Oltjen S, Goswami M, Zawadzki RJ, Nolta JA, Park SS (2017) Protective effect of intravitreal administration of exosomes derived from mesenchymal stem cells on retinal ischemia. Curr Eye Res 42:1358–1367. https://doi.org/10.1080/02713683.2017.1319491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yan B, Gao L, Huang Y, Wang X, Lang X, Yan F, Meng B, Sun X, Li G, Wang Y (2020) Exosomes derived from BDNF-expressing 293T attenuate ischemic retinal injury in vitro and in vivo. Aging. https://doi.org/10.18632/aging.202245

    Article  PubMed  PubMed Central  Google Scholar 

  127. Pan D, Chang X, Xu M, Zhang M, Zhang S, Wang Y, Luo X, Xu J, Yang X, Sun X (2019) UMSC-derived exosomes promote retinal ganglion cells survival in a rat model of optic nerve crush. J Chem Neuroanat 96:134–139. https://doi.org/10.1016/j.jchemneu.2019.01.006

    Article  CAS  PubMed  Google Scholar 

  128. Prete M, Dammacco R, Fatone MC, Racanelli V (2016) Autoimmune uveitis: clinical, pathogenetic, and therapeutic features. Clin Exp Med 16:125–136. https://doi.org/10.1007/s10238-015-0345-6

    Article  CAS  PubMed  Google Scholar 

  129. Servat JJ, Mears KA, Black EH, Huang JJ (2012) Biological agents for the treatment of uveitis. Expert Opin Biol Ther 12:311–328. https://doi.org/10.1517/14712598.2012.658366

    Article  CAS  PubMed  Google Scholar 

  130. Bai L, Shao H, Wang H, Zhang Z, Su C, Dong L, Yu B, Chen X, Li X, Zhang X (2017) Effects of mesenchymal stem cell-derived exosomes on experimental autoimmune uveitis. Sci Rep 7:4323. https://doi.org/10.1038/s41598-017-04559-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kang M, Choi JK, Jittayasothorn Y, Egwuagu CE (2020) Interleukin 35-producing exosomes suppress neuroinflammation and autoimmune uveitis. Front Immunol 11:1051. https://doi.org/10.3389/fimmu.2020.01051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jiang G, Yun J, Kaplan HJ, Zhao Y, Sun D, Shao H (2021) Vaccination with circulating exosomes in autoimmune uveitis prevents recurrent intraocular inflammation. Clin Exp Ophthalmol 49:1069–1077. https://doi.org/10.1111/ceo.13990

    Article  PubMed  Google Scholar 

  133. Jiang L, Cao H, Deng T, Yang M, Meng T, Yang H, Luo X (2021) Serum exosomal miR-377-3p inhibits retinal pigment epithelium proliferation and offers a biomarker for diabetic macular edema. J Int Med Res 49:3000605211002975. https://doi.org/10.1177/03000605211002975

    Article  CAS  PubMed  Google Scholar 

  134. Riau AK, Ong HS, Yam GHF, Mehta JS (2019) Sustained delivery system for stem cell-derived exosomes. Front Pharmacol 10:1368. https://doi.org/10.3389/fphar.2019.01368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chaput N, Théry C (2011) Exosomes: immune properties and potential clinical implementations. Semin Immunopathol 33:419–440. https://doi.org/10.1007/s00281-010-0233-9

    Article  CAS  PubMed  Google Scholar 

  136. Deng CL, Hu CB, Ling ST, Zhao N, Bao LH, Zhou F, Xiong YC, Chen T, Sui BD, Yu XR, Hu CH (2021) Photoreceptor protection by mesenchymal stem cell transplantation identifies exosomal MiR-21 as a therapeutic for retinal degeneration. Cell Death Differ 28:1041–1061. https://doi.org/10.1038/s41418-020-00636-4

    Article  CAS  PubMed  Google Scholar 

  137. Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi-Mohammadi M, Ataei F, Dana N, Javan M (2017) MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol (Dordr) 40:457–470. https://doi.org/10.1007/s13402-017-0335-7

    Article  CAS  PubMed  Google Scholar 

  138. Rajool Dezfuly A, Safaee A, Salehi H (2021) Therapeutic effects of mesenchymal stem cells-derived extracellular vesicles’ miRNAs on retinal regeneration: a review. Stem Cell Res Ther 12:530. https://doi.org/10.1186/s13287-021-02588-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dong X, Lei Y, Yu Z, Wang T, Liu Y, Han G, Zhang X, Li Y, Song Y, Xu H, Du M, Yin H, Wang X, Yan H (2021) Exosome-mediated delivery of an anti-angiogenic peptide inhibits pathological retinal angiogenesis. Theranostics 11:5107–5126. https://doi.org/10.7150/thno.54755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Aboul Naga SH, Dithmer M, Chitadze G, Kabelitz D, Lucius R, Roider J, Klettner A (2015) Intracellular pathways following uptake of bevacizumab in RPE cells. Exp Eye Res 131:29–41. https://doi.org/10.1016/j.exer.2014.12.010

    Article  CAS  PubMed  Google Scholar 

  141. Radhakrishnan K, Sonali N, Moreno M, Nirmal J, Fernandez AA, Venkatraman S, Agrawal R (2017) Protein delivery to the back of the eye: barriers, carriers and stability of anti-VEGF proteins. Drug Discov Today 22:416–423. https://doi.org/10.1016/j.drudis.2016.10.015

    Article  CAS  PubMed  Google Scholar 

  142. Sanghani A, Andriesei P, Kafetzis KN, Tagalakis AD, Yu-Wai-Man C (2022) Advances in exosome therapies in ophthalmology-from bench to clinical trial. Acta Ophthalmol 100:243–252. https://doi.org/10.1111/aos.14932

    Article  PubMed  Google Scholar 

  143. Hood JL (2016) Post isolation modification of exosomes for nanomedicine applications. Nanomedicine 11:1745–1756. https://doi.org/10.2217/nnm-2016-0102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Vallée A (2022) Curcumin and Wnt/β-catenin signaling in exudative age-related macular degeneration (review). Int J Mol Med. https://doi.org/10.3892/ijmm.2022.5135

    Article  PubMed  PubMed Central  Google Scholar 

  145. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D, Zhang HG (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 18:1606–1614. https://doi.org/10.1038/mt.2010.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tian T, Zhang HX, He CP, Fan S, Zhu YL, Qi C, Huang NP, Xiao ZD, Lu ZH, Tannous BA, Gao J (2018) Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials 150:137–149. https://doi.org/10.1016/j.biomaterials.2017.10.012

    Article  CAS  PubMed  Google Scholar 

  147. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV, Batrakova EV (2015) Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 207:18–30. https://doi.org/10.1016/j.jconrel.2015.03.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kimiz-Gebologlu I, Oncel SS (2022) Exosomes: large-scale production, isolation, drug loading efficiency, and biodistribution and uptake. J Control Release 347:533–543. https://doi.org/10.1016/j.jconrel.2022.05.027

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our many colleagues who have contributed to our studies on this research.

Funding

This project was funded by National Natural Science Foundation of China (82074276), Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (ZYYCXTD-D-202002), Science and Technology Program of Tianjin (22ZYJDSS00100), Innovation Research Project of Chinese People's Armed Police Force (ZZKY20222419), and Program for Science and Technology of Logistics University of Chinese People’s Armed Police Force (WHJ202301).

Author information

Authors and Affiliations

Authors

Contributions

XP: Conceptualization, Design, Writing—original draft preparation & editing. TZ: Writing-editing. RL and XJ: Writing-review & editing.

Corresponding authors

Correspondence to Rui Liu or Xin Jin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

No animals was used for the research described in the article.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Zhang, T., Liu, R. et al. Potential in exosome-based targeted nano-drugs and delivery vehicles for posterior ocular disease treatment: from barriers to therapeutic application. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04798-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04798-w

Keywords

Navigation