Skip to main content
Log in

Investigation of magnesium hydroxide functionalized by polydopamine/transition metal ions on flame retardancy of epoxy resin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Aiming to impart epoxy resin (EP) with flame retardancy, magnesium hydroxide (MDH) was sequentially functionalized with four transition metals and polydopamine (PDA) to prepare MDH@M-PDA (M includes Fe3+, Co2+, Cu2+, Ni2+). Compared with MDH, MDH@M-PDA presented better dispersion in EP matrix. The results illustrated that a 30 mass% of MDH@Fe-PDA imparted the EP matrix with best fire retardancy and thermal stability. Specifically, the resultant EP/MDH/MDH@Fe-PDA composites remarkably reduced flammability, which is reflected by high LOI value of 29.3% and UL-94 V-0 ratings. The peak heat release rate (PHRR) and total smoke production (TSP) were reduced by 52% and 21%, respectively. Moreover, the impact and tensile strength of EP/MDH/MDH@M-PDA composites are improved compared with EP/MDH due to the better chemical compatibility of PDA in the EP matrix. Notably, this work provided a feasible design for organo-modified MDH and enriched its practical applications of MDH as functional fillers to polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2

Similar content being viewed by others

References

  1. Xu Y, Li J, Shen R, et al. Experimental study on the synergistic flame retardant effect of bio-based magnesium phytate and rice husk ash on epoxy resins. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-020-10420-8.

    Article  Google Scholar 

  2. Zhu ZM, Wang LX, Lin XB, et al. Synthesis of a novel phosphorus-nitrogen flame retardant and its application in epoxy resin. Polym Degrad Stab. 2019;169:108981. https://doi.org/10.1016/j.polymdegradstab.2019.108981.

    Article  CAS  Google Scholar 

  3. Bi Q, Yao D, Yin GZ, et al. Surface engineering of magnesium hydroxide via bioinspired iron-loaded polydopamine as green and efficient strategy to epoxy composites with improved flame retardancy and reduced smoke release. React Funct Polym. 2020;155:104690. https://doi.org/10.1016/j.reactfunctpolym.2020.104690.

    Article  CAS  Google Scholar 

  4. Liang DX, Zhu XJ, Dai P, et al. Preparation of a novel lignin-based flame retardant for epoxy resin. Mater Chem Phys. 2021;259(17):124101. https://doi.org/10.1016/j.matchemphys.2020.124101.

    Article  CAS  Google Scholar 

  5. Huo SQ, Zhou ZX, Jiang JW, et al. Flame-retardant, transparent, mechanically-strong and tough epoxy resin enabled by high-efficiency multifunctional boron-based polyphosphonamide. Chem Eng J. 2022;427:131578. https://doi.org/10.1016/j.cej.2021.131578.

    Article  CAS  Google Scholar 

  6. Huo SQ, Song PG, Yu B, et al. Phosphorus-containing flame retardant epoxy thermosets: recent advances and future perspectives. Prog Polym Sci. 2021;114:101366. https://doi.org/10.1016/j.progpolymsci.2021.101366.

    Article  CAS  Google Scholar 

  7. Zhang Y, Yang W. Synthesis and characterization of PEDMCD as a flame retardant and its application in epoxy resins. RSC Adv. 2021;11(5):2756–66. https://doi.org/10.1039/D0RA10233D.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Chen JH, Lu JH, Pu XL, et al. Recyclable, malleable and intrinsically flame-retardant epoxy resin with catalytic transesterification. Chemosphere. 2022. https://doi.org/10.1016/j.chemosphere.2022.133778.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Wang SH, Li JS, Wang WJ, et al. Silicone filled halloysite nanotubes for polypropylene composites: flame retardancy, smoke suppression and mechanical property. Compos Part A Appl Sci Manuf. 2021;140:106170. https://doi.org/10.1016/j.compositesa.2020.106170.

    Article  CAS  Google Scholar 

  10. Li X, Liu H, Jia X, et al. Novel approach for removing brominated flame retardant from aquatic environments using Cu/Fe-based metal-organic frameworks: a case of hexabromocyclododecane (HBCD). Sci Total Environ. 2018;621:1533–41. https://doi.org/10.1016/j.scitotenv.2017.10.075.

    Article  CAS  PubMed  Google Scholar 

  11. Charitopoulou MA, Kalogiannis KG, Lappas AA, et al. Novel trends in the thermo-chemical recycling of plastics from WEEE containing brominated flame retardants. Environ Sci Pollut Res. 2020. https://doi.org/10.1007/s11356-020-09932-5.

    Article  Google Scholar 

  12. Cheng JJ, Niu SS, Zhao Y, et al. The flame retardant and thermal conductivity properties of high thermal conductivity expandable graphite microcapsule filled natural rubber composites. Constr Build Mater. 2022;318:125998. https://doi.org/10.1016/j.conbuildmat.2021.125998.

    Article  CAS  Google Scholar 

  13. Hanna AA, Abdelmoaty AS, Sherief MA. Synthesis, characterization, and thermal behavior of nanoparticles of Mg(OH)2 to be used as flame retardants. J Chem. 2019. https://doi.org/10.1155/2019/1805280.

    Article  Google Scholar 

  14. Meng W, Wu W, Zhang W, et al. Bio-based Mg(OH)2@M-Phyt: improving the flame-retardant and mechanical properties of flexible poly (vinyl chloride). Polym Int. 2019;68(10):1759–66. https://doi.org/10.1002/pi.5885.

    Article  CAS  Google Scholar 

  15. Ma J, Wang X, Li J, et al. Facile preparation of flame retardant cotton fabric via adhesion of Mg(OH)2 by the assistance of ionic liquid. Polymers. 2020;12(2):259. https://doi.org/10.3390/polym12020259.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Yao M, Wu H, Liu H, et al. In-situ growth of boron nitride for the effect of layer-by-layer assembly modified magnesium hydroxide on flame retardancy, smoke suppression, toxicity and char formation in EVA. Polym Degrad Stab. 2020;183:109417. https://doi.org/10.1016/j.polymdegradstab.2020.109417.

    Article  CAS  Google Scholar 

  17. Sun H, Qi Y, Zhang J. Effect of magnesium hydroxide as a multifunctional additive on high solar reflectance, thermal emissivity, and flame retardancy properties of PP/SEBS/oil composites. Polym Compos. 2020;41(10):4010–9. https://doi.org/10.1002/pc.25688.

    Article  CAS  Google Scholar 

  18. Liu T, Wang F, Li G, et al. Magnesium hydroxide nanoparticles grafted by DOPO and its flame retardancy in ethylene-vinyl acetate copolymers. J Appl Polym Sci. 2021;138(1):49607. https://doi.org/10.1002/app.49607.

    Article  CAS  Google Scholar 

  19. Yang W, Wu S, Yang W, et al. Nanoparticles of polydopamine for improving mechanical and flame-retardant properties of an epoxy resin. Compos B Eng. 2020;186:107828. https://doi.org/10.1016/j.compositesb.2020.107828.

    Article  CAS  Google Scholar 

  20. Li Z, Liu L, González AJ, et al. Bioinspired polydopamine-induced assembly of ultrafine Fe(OH)3 nanoparticles on halloysite toward highly efficient fire retardancy of epoxy resin via an action of interfacial catalysis. Polym Chem. 2017;8(26):3926–36. https://doi.org/10.1039/C7PY00660H.

    Article  CAS  Google Scholar 

  21. Tawiah B, Yu B, Yuen ACY, et al. Facile preparation of uniform polydopamine particles and its application as an environmentally friendly flame retardant for biodegradable polylactic acid. J Fire Sci. 2020;38(6):485–503.

    Article  CAS  Google Scholar 

  22. Wang S, Du X, Deng S, et al. A polydopamine-bridged hierarchical design for fabricating flame-retarded, superhydrophobic, and durable cotton fabric. Cellulose. 2019;26(11):7009–23. https://doi.org/10.1007/s10570-019-02586-8.

    Article  CAS  Google Scholar 

  23. Ramezanpour M, Raeisi SN, Shahidi SA, et al. Polydopamine-functionalized magnetic iron oxide for the determination of trace levels of lead in bovine milk. Anal Biochem. 2019;570:5–12. https://doi.org/10.1016/j.ab.2019.01.008.

    Article  CAS  PubMed  Google Scholar 

  24. Qiu S, Zhou Y, Ren X, et al. Construction of hierarchical functionalized black phosphorus with polydopamine: a novel strategy for enhancing flame retardancy and mechanical properties of polyvinyl alcohol. Chem Eng J. 2020;402:126212. https://doi.org/10.1016/j.cej.2020.126212.

    Article  CAS  Google Scholar 

  25. Lu YL, Ma J, Xu TY, et al. Preparation and properties of natural rubber reinforced with polydopamine-coating modified carbon nanotubes. Express Polym Lett. 2017;1(11):21–34. https://doi.org/10.3144/expresspolymlett.2017.4.

    Article  CAS  Google Scholar 

  26. Zhang TM, Zhang W, Xi H, et al. Polydopamine functionalized cellulose-MXene composite aerogel with superior adsorption of methylene blue. Cellulose. 2021;28(7):4281–93. https://doi.org/10.1007/s10570-021-03737-6.

    Article  CAS  Google Scholar 

  27. Li B. A study of the thermal decomposition and smoke suppression of poly (vinyl chloride) treated with metal oxides using a cone calorimeter at a high incident heat flux. Polym Degrad Stab. 2002;78(2):349–56. https://doi.org/10.1016/S0141-3910(02)00185-4.

    Article  CAS  Google Scholar 

  28. Wang N, Teng H, Zhang X, et al. Synthesis of a carrageenan-iron complex and its effect on flame retardancy and smoke suppression for waterborne epoxy. Polymers. 2019;11(10):1677. https://doi.org/10.3390/polym11101677.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Shi C, Qian X, Jing J. Phosphorylated cellulose/Fe3+ complex: a novel flame retardant for epoxy resins. Polym Adv Technol. 2021;32(1):183–9. https://doi.org/10.1002/pat.5073.

    Article  CAS  Google Scholar 

  30. Wang X, Yin Y, Li M, et al. Hexagonal boron Nitride@ZnFe2O4 hybrid nanosheet: an ecofriendly flame retardant for polyvinyl alcohol. J Solid State Chem. 2020;287:121366. https://doi.org/10.1016/j.jssc.2020.121366.

    Article  CAS  Google Scholar 

  31. Zhang M, Cheng Y, Li Z, et al. Biomass chitosan-induced Fe3O4 functionalized halloysite nanotube composites: preparation, characterization and flame-retardant performance. NANO. 2019;14(12):1950154. https://doi.org/10.1142/S1793292019501546.

    Article  CAS  Google Scholar 

  32. Wang L, Zhang M, Li B. Thermal analysis and flame-retarded mechanism of composites composed of ethylene vinyl acetate and layered double hydroxides containing transition metals (Mn Co, Cu, Zn). Appl Sci. 2016;6(5):131. https://doi.org/10.3390/app6050131.

    Article  CAS  Google Scholar 

  33. Younis AA, Faheim AA, Elsawy MM, et al. Novel flame retardant paint based on Co (II) and Ni (II) metal complexes as new additives for surface coating applications. Appl Organomet Chem. 2021;35(1):e6070. https://doi.org/10.1002/aoc.6070.

    Article  CAS  Google Scholar 

  34. Liu L, Pan Y, Zhao Y, et al. Self-assembly of phosphonate-metal complex for superhydrophobic and durable flame-retardant polyester-cotton fabrics. Cellulose. 2020;27(10):6011–25. https://doi.org/10.1007/s10570-020-03148-z.

    Article  CAS  Google Scholar 

  35. Jia MA, Du YH, Tay BY, et al. One-pot synthesis of Fe (III)-Polydopamine complex nanospheres: morphological evolution, mechanism and application of the carbonized hybrid nanospheres in catalysis and Zn-air battery. Langmuir. 2016;32:9265–75. https://doi.org/10.1021/acs.langmuir.6b02331.

    Article  CAS  Google Scholar 

  36. Zhang ZD, Qin JY, Yang RJ, et al. Synthesis of a novel dual layered double hydroxide hybrid nanomaterial and its application in epoxy nanocomposites. Chem Eng J. 2020. https://doi.org/10.1016/j.cej.2019.122777.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Yun GW, Lee JH, Kim SH. Flame retardant and mechanical properties of expandable graphite/polyurethane foam composites containing iron phosphonate dopamine-coated cellulose. Polym Compos. 2020;41(7):2816–28. https://doi.org/10.1002/pc.25578.

    Article  CAS  Google Scholar 

  38. Zhang J, Li Z, Zhang L, et al. Bimetallic metal-organic framework and graphene oxide nano-hybrids induced carbonaceous reinforcement towards fire retardant epoxy: a novel alternative carbonization mechanism. Carbon. 2019. https://doi.org/10.1016/j.carbon.2019.07.003.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Cheng JJ, Niu SS, et al. The thermal behavior and flame retardant performance of phase change material microcapsules with modified carbon nanotubes. Energy. 2022;240:122821. https://doi.org/10.1016/j.energy.2021.122821.

    Article  CAS  Google Scholar 

  40. Huo SQ, Sai T, Ran SY, et al. A hyperbranched P/N/B-containing oligomer as multifunctional flame retardant for epoxy resins. Compos B Eng. 2022;234:109701. https://doi.org/10.1016/j.compositesb.2022.109701.

    Article  CAS  Google Scholar 

  41. Ye GF, Huo SQ, Wang C, et al. A novel hyperbranched phosphorus-boron polymer for transparent, flame-retardant, smoke-suppressive, robust yet tough epoxy resins. Compos B Eng. 2021;227:109395. https://doi.org/10.1016/j.compositesb.2021.109395.

    Article  CAS  Google Scholar 

  42. Guo F, Zhang YZ, Cai L, et al. Functionalized graphene with Platelet-like magnesium hydroxide for enhancing fire safety, smoke suppression and toxicity reduction of Epoxy resin. Appl Surf Sci. 2022;578:152052. https://doi.org/10.1016/j.apsusc.2021.152052.

    Article  CAS  Google Scholar 

  43. Li Z, Liu ZQ, Wang DY, et al. Interfacial engineering of layered double hydroxide toward epoxy resin with improved fire safety and mechanical property. Compos B Eng. 2018;152:336–46. https://doi.org/10.1016/j.compositesb.2018.08.094.

    Article  CAS  Google Scholar 

  44. Qiu X, Kundu CK, Li Z, et al. Layer-by-layer-assembled flame-retardant coatings from polydopamine-induced in situ functionalized and reduced graphene oxide. J Mater Sci. 2019;54(21):13848–62. https://doi.org/10.1007/s10853-019-03879-w.

    Article  CAS  Google Scholar 

  45. Yue X, Li C, Ni Y, et al. Flame retardant nanocomposites based on 2D layered nanomaterials: a review. J Mater Sci. 2019;54(20):13070–105. https://doi.org/10.1007/s10853-019-03841-w.

    Article  CAS  Google Scholar 

  46. Li Z, Zhang JH, Wang DY, et al. Ultrafine nickel nanocatalyst-engineering of an organic layered double hydroxide towards a super-efficient fire-safe epoxy resin via interfacial catalysis. J Mater Chem A. 2018;6(18):8488–98. https://doi.org/10.1039/C8TA00910D.

    Article  CAS  Google Scholar 

  47. Wang Y, Li Z, Li Y, et al. Spray-drying-assisted layer-by-layer assembly of alginate, 3-aminopropyltriethoxysilane, and magnesium hydroxide flame retardant and its catalytic graphitization in ethylene-vinyl acetate resin. ACS Appl Mater Interfaces. 2018;10(12):10490–500. https://doi.org/10.1021/acsami.8b01556.

    Article  CAS  PubMed  Google Scholar 

  48. Wang X, Hu W, Hu Y. Polydopamine-bridged synthesis of ternary h-BN@ PDA@TiO2 as nanoenhancers for thermal conductivity and flame retardant of polyvinyl alcohol. Front Chem. 2020;8:893. https://doi.org/10.3389/fchem.2020.587474.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China, grant number 51973124; Technology for Producing Advanced Functional Mg-Based Chemicals, grant number 2020YFC1909302; Liao Ning Revitalization Talents Program, grant number XLYC2005002; “Jie Bang Gua Shuai” of Science and Technology Projects of Liaoning Province in 2021, grant number 2021JH1/10400091; Shenyang Science and Technology Program - Major Key Core Technology Project, grant number 20-202-1-15.

Author information

Authors and Affiliations

Authors

Contributions

DZ contributed to investigation, methodology, testing, and writing—original. QB contributed to investigation, methodology, testing, and writing—original. G-ZY contributed to methodology, testing, and writing—revision. YJ contributed to investigation, testing, and laboratory-support. WF contributed to testing. NW contributed to supervision, funding Support, and management. D-YW contributed to supervision, methodology, and writing—revision.

Corresponding authors

Correspondence to Na Wang or De-Yi Wang.

Ethics declarations

Conflict of interest

All authors have declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Bi, Q., Yin, GZ. et al. Investigation of magnesium hydroxide functionalized by polydopamine/transition metal ions on flame retardancy of epoxy resin. J Therm Anal Calorim 147, 13301–13312 (2022). https://doi.org/10.1007/s10973-022-11467-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11467-5

Keywords

Navigation