Skip to main content
Log in

Self-assembly of phosphonate-metal complex for superhydrophobic and durable flame-retardant polyester–cotton fabrics

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Poor washing durability still poses a big challenge to the practical applications of flame-retardant fabrics. Herein, a facile and eco-friendly dip-coating approach is proposed to fabricate durable flame-retardant and superhydrophobic polyester–cotton (PTCO) fabrics. Self-assembled depositions of diethylenetriamine penta(methylene-phosphonic acid) (DTPMP) and ferric ion (Fe3+) were applied on PTCO fabrics through coordination interaction. Owing to the intumescent effect of DTPMP–Fe3+ complexes, DTPMP–Fe3+-coated fabric self-extinguished in the horizontal flame testing. Polydimethylsiloxane (PDMS) was then applied on DTPMP–Fe3+ complexes to impart the flame-retardant PTCO fabrics with superhydrophobicity (water contact angle: 155.6°) and self-cleaning properties. Especially, the washing durability of DTPMP–Fe3+-coated PTCO fabrics was improved by the modification of PDMS. The DT/Fe-8BL@PDMS sample still achieved self-extinguishing in the horizontal flame testing even after 12 laundering cycles.

Graphic abstract

Flame-retardant and superhydrophobic polyester–cotton fabrics are fabricated through the deposition of DTPMP–Fe3+ complexes and further modification of PDMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Carosio F, Alongi J, Malucelli G (2012) Layer by layer ammonium polyphosphate-based coatings for flame retardancy of polyester–cotton blends. Carbohydr Polym 88:1460–1469

    Article  CAS  Google Scholar 

  • Chen S, Li X, Li Y, Sun J (2015) Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 9:4070–4076

    Article  CAS  Google Scholar 

  • Chu F, Xu Z, Mu X, Cai W, Zhou X, Hu W et al (2020) Construction of hierarchical layered double hydroxide/poly(dimethylsiloxane) composite coatings on ramie fabric surfaces for oil/water separation and flame retardancy. Cellulose 27:3485–3499

    Article  CAS  Google Scholar 

  • Dai H, Gao C, Sun J, Li C, Li N, Wu L et al (2019) Controllable high-speed electrostatic manipulation of water droplets on a superhydrophobic surface. Adv Mater 31:1905449

    Article  CAS  Google Scholar 

  • Feng L, Li S, Li Y, Li H, Zhang L, Zhai J et al (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860

    Article  CAS  Google Scholar 

  • Friedfeld SJ, He S, Tomson MB (1998) The temperature and ionic strength dependence of the solubility product constant of ferrous phosphonate. Langmuir 14:3698–3703

    Article  CAS  Google Scholar 

  • Heinze T, Sarbova V, Nagel MCV (2012) Simple synthesis of mixed cellulose acylate phosphonates applying n-propyl phosphonic acid anhydride. Cellulose 19:523–531

    Article  CAS  Google Scholar 

  • Jia Y, Lu Y, Zhang G, Liang Y, Zhang F (2017) Facile synthesis of an eco-friendly nitrogen–phosphorus ammonium salt to enhance the durability and flame retardancy of cotton. J Mater Chem A 5:9970–9981

    Article  CAS  Google Scholar 

  • Jin X, Gu X, Chen C, Tang W, Li H, Liu X et al (2017) The fire performance of polylactic acid containing a novel intumescent flame retardant and intercalated layered double hydroxides. J Mater Sci 52:12235–12250

    Article  CAS  Google Scholar 

  • Jordanov I, Magovac E, Fahami A, Lazar S, Kolibaba T, Smith J et al (2019) Flame retardant polyester fabric from nitrogen-rich low molecular weight additives within intumescent nanocoating. Polym Degrad Stab 170:108998

    Article  CAS  Google Scholar 

  • Kiaei Z, Haghtalab A (2014) Experimental study of using Ca-DTPMP nanoparticles in inhibition of CaCO3 scaling in a bulk water process. Desalination 338:84–92

    Article  CAS  Google Scholar 

  • Leistner M, Abu-Odeh AA, Rohmer SC, Grunlan JC (2015) Water-based chitosan/melamine polyphosphate multilayer nanocoating that extinguishes fire on polyester–cotton fabric. Carbohydr Polym 130:227–232

    Article  CAS  Google Scholar 

  • Li YC, Mannen S, Morgan AB, Chang S, Yang YH, Condon B et al (2011) Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric. Adv Mater 23:3926–3931

    Article  CAS  Google Scholar 

  • Li L, Zhang G, Su Z (2016) One-step assembly of phytic acid metal complexes for superhydrophilic coatings. Angew Chem Int Ed 55:9093–9096

    Article  CAS  Google Scholar 

  • Liu L, Pan Y, Wang Z, Hou Y, Gui Z, Hu Y (2017) Layer-by-layer assembly of hypophosphorous acid-modified chitosan based coating for flame-retardant polyester–cotton blends. Ind Eng Chem Res 56:9429–9436

    Article  CAS  Google Scholar 

  • Liu L, Hou Y, Pan Y, Liu J, Wang W, Wang J et al (2019) Substrate-versatile approach to fabricate mechanochemically robust and superhydrophobic surfaces from waste fly ash. Prog Org Coat 132:353–361

    Article  CAS  Google Scholar 

  • Long M, Peng S, Deng W, Miao X, Wen N, Zhou Q et al (2017) A robust superhydrophobic PDMS@ ZnSn(OH)6 coating with under-oil self-cleaning and flame retardancy. J Mater Chem A 5:22761–22771

    Article  CAS  Google Scholar 

  • Malucelli G (2016) Surface-engineered fire protective coatings for fabrics through sol–gel and layer-by-layer methods: an overview. Coatings 6:33

    Article  Google Scholar 

  • Montazer M, Sadighi A (2006) Optimization of the hot alkali treatment of polyester/cotton fabric with sodium hydrosulfite. J Appl Polym Sci 100:5049–5055

    Article  CAS  Google Scholar 

  • Nowack B, Lützenkirchen J, Behra P, Sigg L (1996) Modeling the adsorption of metal–EDTA complexes onto oxides. Environ Sci Technol 30:2397–2405

    Article  CAS  Google Scholar 

  • Palaskar S, Kale KH, Nadiger G, Desai A (2011) Dielectric barrier discharge plasma induced surface modification of polyester/cotton blended fabrics to impart water repellency using HMDSO. J Appl Polym Sci 122:1092–1100

    Article  CAS  Google Scholar 

  • Pan H, Wang W, Pan Y, Song L, Hu Y, Liew KM (2015) Formation of self-extinguishing flame retardant biobased coating on cotton fabrics via layer-by-layer assembly of chitin derivatives. Carbohydr Polym 115:516–524

    Article  CAS  Google Scholar 

  • Pan Y, Wang W, Pan H, Zhan J, Hu Y (2016) Fabrication of montmorillonite and titanate nanotube based coatings via layer-by-layer self-assembly method to enhance the thermal stability, flame retardancy and ultraviolet protection of polyethylene terephthalate (PET) fabric. RSC Adv 6:53625–53634

    Article  CAS  Google Scholar 

  • Pan Y, Liu L, Wang X, Song L, Hu Y (2018) Hypophosphorous acid cross-linked layer-by-layer assembly of green polyelectrolytes on polyester–cotton blend fabrics for durable flame-retardant treatment. Carbohydr Polym 201:1–8

    Article  CAS  Google Scholar 

  • Pan Y, Liu L, Zhang Y, Song L, Hu Y, Jiang S et al (2019) Effect of genipin crosslinked layer-by-layer self-assembled coating on the thermal stability, flammability and wash durability of cotton fabric. Carbohydr Polym 206:396–402

    Article  CAS  Google Scholar 

  • Pawlak A, Mucha M (2003) Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta 396:153–166

    Article  CAS  Google Scholar 

  • Qiu X, Li Z, Li X, Zhang Z (2018) Flame retardant coatings prepared using layer by layer assembly: a review. Chem Eng J 334:108–122

    Article  CAS  Google Scholar 

  • Richardson JJ, Björnmalm M, Caruso F (2015) Technology-driven layer-by-layer assembly of nanofilms. Science 348:aaa2491

    Article  Google Scholar 

  • Tantayakom V, Sreethawong T, Fogler HS, De Moraes F, Chavadej S (2005) Scale inhibition study by turbidity measurement. J Colloid Interface Sci 284:57–65

    Article  CAS  Google Scholar 

  • Tian X, Verho T, Ras RH (2016) Moving superhydrophobic surfaces toward real-world applications. Science 352:142–143

    Article  CAS  Google Scholar 

  • Vasiljević J, Hadžić S, Jerman I, Černe L, Tomšič B, Medved J et al (2013) Study of flame-retardant finishing of cellulose fibres: organic–inorganic hybrid versus conventional organophosphonate. Polym Degrad Stab 98:2602–2608

    Article  Google Scholar 

  • Verho T, Bower C, Andrew P, Franssila S, Ikkala O, Ras RH (2011) Mechanically durable superhydrophobic surfaces. Adv Mater 23:673–678

    Article  CAS  Google Scholar 

  • Wang X, Hu Y, Song L, Xuan S, Xing W, Bai Z et al (2010) Flame retardancy and thermal degradation of intumescent flame retardant poly(lactic acid)/starch biocomposites. Ind Eng Chem Res 50:713–720

    Article  Google Scholar 

  • Wang X, Song L, Yang H, Xing W, Kandola B, Hu Y (2012) Simultaneous reduction and surface functionalization of graphene oxide with POSS for reducing fire hazards in epoxy composites. J Mater Chem 22:22037–22043

    Article  CAS  Google Scholar 

  • Wang B, Xu Y, Li P, Zhang F, Liu Y, Zhu P (2020) Flame-retardant polyester/cotton blend with phosphorus/nitrogen/silicon-containing nano-coating by layer-by-layer assembly. Appl Surf Sci 509:145323

    Article  CAS  Google Scholar 

  • Zhang L, Kim D, Jun YS (2018) The effects of phosphonate-based scale inhibitor on brine–biotite interactions under subsurface conditions. Environ Sci Technol 52:6042–6049

    Article  CAS  Google Scholar 

  • Zhang Y, Tian W, Liu L, Cheng W, Wang W, Liew M et al (2019) Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings. Chem Eng J 372:1077–1090

    Article  CAS  Google Scholar 

  • Zheng D, Zhou J, Wang Y, Zhang F, Zhang G (2018) A reactive flame retardant ammonium salt of diethylenetriaminepenta (methylene-phosphonic acid) for enhancing flame retardancy of cotton fabrics. Cellulose 25:787–797

    Article  CAS  Google Scholar 

  • Zhou C, Chen Z, Yang H, Hou K, Zeng X, Zheng Y et al (2017) Nature-inspired strategy toward superhydrophobic fabrics for versatile oil/water separation. ACS Appl Mater Interfaces 9:9184–9194

    Article  CAS  Google Scholar 

  • Zou Y, Reddy N, Yang Y (2011) Reusing polyester/cotton blend fabrics for composites. Compos Part B Eng 42:763–770

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the National Key Research and Development Program of China (Grant No.: 2016YFC0802802), and the National Natural Science Foundation of China (Grant Nos.: 51573173, 21604081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhou Gui or Xin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 751 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Pan, Y., Zhao, Y. et al. Self-assembly of phosphonate-metal complex for superhydrophobic and durable flame-retardant polyester–cotton fabrics. Cellulose 27, 6011–6025 (2020). https://doi.org/10.1007/s10570-020-03148-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03148-z

Keywords

Navigation