Skip to main content
Log in

Thermospectrometry

A new method to follow the thermal processes with spectrometric methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermospectrometry, a new and unique material testing and analytical method has been developed by combining thermal analysis with atom and molecule spectrometry. The central unit of the method is a stationary furnace that can be heated up to 1700 °C. Nanoparticles of solid, liquid or gaseous samples travel upwards between the two heated walls of the furnace placed 10 mm from each other, where conversion and decomposition processes occur separately in time and space according to the thermal properties of substances. The formation and decomposition of molecules, atoms and ions can be observed directly with narrow light beams of spectral lamps heights of the furnace (maximum of 200 mm). The developed method has been used for studying the atomization of inorganic and organic water soluble mercury salts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gallagher PK. Principles and Techniques. In: Brown ME, editor. Handbook of thermal analysis and calorimetry. 1st ed. Amsterdam: Elsevier Science B.V; 1998. p. 1–72.

  2. Ozawa T. Thermal analysis—review and prospect. Thermochim Acta. 2000;355:35–42.

    Article  CAS  Google Scholar 

  3. Willcocks PH. Aspects of quality assurance within the industrial thermal analysis laboratory. Thermochim Acta. 1995;256:1–8.

    Article  CAS  Google Scholar 

  4. Plante AF, Fernández JM, Leifeld J. Application of thermal analysis techniques in soil science. Geoderma. 2009;153:1–10.

    Article  CAS  Google Scholar 

  5. Bukovec P. Thermal analysis in inorganic chemistry: progress report. Thermochim Acta. 1987;110:383–7.

    Article  CAS  Google Scholar 

  6. Webb M, Last PM, Breen C. Synergic chemical analysis—the coupling of TG with FTIR, MS and GC–MS. Thermochim Acta. 1999;326:151–8.

    Article  CAS  Google Scholar 

  7. Dobkowski Z. Thermal analysis techniques for characterization of polymer materials. Polym Degrad Stab. 2006;91:488–93.

    Article  CAS  Google Scholar 

  8. Sarig JF. Application of thermal analysis to organic chemistry: a review. Thermochim Acta. 1989;148:325–34.

    Article  Google Scholar 

  9. O’Neill MAA, Gaisford S. Application and use of isothermal calorimetry in pharmaceutical development. Int J Pharm. 2011;417:83–93.

    Article  Google Scholar 

  10. Snyder PA, Tripathi A, Dworzanski JP, Maswadeh WM, Wick CH. Characterization of microorganisms by thermogravimetric analysis—mass spectrometry. Anal Chim Acta. 2006;536:283–93.

    Article  Google Scholar 

  11. Galwey AK. Is the science of thermal analysis kinetics based on solid foundations? A literature appraisal. Thermochim Acta. 2004;413:139–83.

    Article  CAS  Google Scholar 

  12. Hill JO. Thermal analysis, coupled techniques. In: Worsfold P, Townshend A, Poole C, editors. Encyclopedia of analytical science. 2nd ed. Amsterdam: Elsevier; 2005. p. 29–34.

  13. Yariv S. Thermo-IR-spectroscopy analysis of the interactions between organic pollutants and clay minerals. Thermochim Acta. 1996;274:1–35.

    Article  CAS  Google Scholar 

  14. Böer TM, Procópio JVV, Nascimento TG, Macędo RO. Correlation of thermal analysis and pyrolysis coupled to GC–MS in the characterization of tacrolimus. J Pharm Biomed Anal. 2013;73:18–23.

    Article  Google Scholar 

  15. Morelli JJ. Thermal analysis using mass spectrometry: a review. J Anal Appl Pyrolysis. 1990;18:1–18.

    Article  CAS  Google Scholar 

  16. Hoffmann S, Schmidt M, Scharsach S, Kniep R. TG–MS of air-sensitive compounds in argon. Thermochim Acta. 2012;527:204–10.

    Article  CAS  Google Scholar 

  17. Malecka B. Thermal decomposition of Cd(CH3COO)2·2H2O studied by a coupled TG-DTA-MS method. J Therm Anal Calorim. 2004;78:535–44.

    Article  CAS  Google Scholar 

  18. Hiramatsu N, Inoue T. Device for high pressure differential thermal analysis for liquid samples. Rev Sci Instrum. 1988;59:671–2.

    Article  CAS  Google Scholar 

  19. Iervolinoa E, Herwaardena AW, Sarrob PM. Calorimeter chip calibration for thermal characterization of liquid samples. Thermochim Acta. 2009;492:95–100.

    Article  Google Scholar 

  20. MacNeil DD, Trussler S, Fortier H, Dahn JR. A novel hermetic differential scanning calorimeter (DSC) sample crucible. Thermochim Acta. 2002;386:153–60.

    Article  CAS  Google Scholar 

  21. Berndt H. High pressure nebulization: a new way of sample introduction for atomic spectroscopy. Fresenius Z Anal Chem. 1988;331:321–3.

    Article  CAS  Google Scholar 

  22. Posta J, Derecskei B. Improvement of the analytical performance of the FAAS method by hydraulic high pressure sample introduction. Microchem J. 1992;46:271–9.

    Article  Google Scholar 

  23. Liptay G. Atlas of thermoanalytical curves. London: Heyden and Son; 1973. p. 72–3.

    Google Scholar 

  24. Duval C. Inorganic thermogravimetric analysis. Amsterdam: Elsevier Publishing Company; 1953. p. 437–50.

    Google Scholar 

  25. Ohta K, Mizuno T. Atom formation processes in the presence of ammonium thiocyanate in a thin-wall tungsten tube atomizer for atomic absorption spectrometry. Spectrochim Acta. 1989;44:95–100.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their acknowledgement for the financial support of GVOP-3.3.3-05/2006-01-0198/3.0 fund. The material of the article is under the intellectual protection of P1200587 Hungarian Patent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dávid Nagy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, D., Falussy, C. & Posta, J. Thermospectrometry. J Therm Anal Calorim 115, 323–329 (2014). https://doi.org/10.1007/s10973-013-3254-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3254-5

Keywords

Navigation