Skip to main content

Advertisement

Log in

Multicomponent Co-based sol–gel catalysts for dry/steam reforming of methane

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The multicomponent Со–Pt–Zr/Al2O3 and Со–Pt–Zr–La/Al2O3 catalysts were prepared by the sol–gel method. The modified Pechini method was used as a sol–gel approach to synthesize a system containing Co, Pt, Zr, and La. The sol–gel materials prepared by such a manner were incorporated into alumina in order to form the catalyst granules. The physicochemical properties of the catalysts were studied by a number of methods (TEM, SEM, BET, XRD, H2-TPR). It was found that the synthesized multicomponent catalysts are highly dispersed systems composed of metal oxides and various microalloys such as the bimetallic Co–Pt and perovskite type structures—LaCoO3 and LaAlO3 having mainly the particle size < 10 nm. The catalytic behaviour of the the new sol–gel materials was tested in dry reforming (DRM), steam reforming (SRM) and combined CO2-Steam reforming of methane (bireforming, BRM) using a feed with a ratio of CO2/CH4/H2O = 0 ÷ 1/1/0 ÷ 1.5 over the temperature interval of 300–800 °C, P = 0.1 MPa, and GHSV varied within 1000–4000 h−1. The synthesized sol–gel catalysts performed the high activity, selectivity, and stability in all processes: DRM, BRM, and SRM with producing syngas with varied ratio of H2/CO depending on a feed composition. Thus, H2/CO ratio is varied within 0.9–4.4 while steam amount added to CH4-CO2 feed is grown from 0 to 1.5 volume parts. Almost complete methane conversion occurs at T = 750–800 °C. The long-term continuous testing of the Co–Pt–Zr–La/Al2O3 catalyst confirmed its stable work in methane conversion by carbon dioxide and/or steam for in total >200 h.

Highlights

  • Со–Pt–Zr(La)/Al2O3 catalysts were synthesized by the modified Pechini sol–gel method.

  • The sol-made catalyst is a highly dispersed system composed of metal oxides and microalloys – Co–Pt, LaCoO3 and LaAlO3.

  • The sol–gel made catalysts perform the high activity and selectivity in syngas production by CH4 conversion by CO2 and/or steam.

  • At relatively low temperature, 700–800 °C, the extent of CH4 conversion is 90–99% depending on a feed composition.

  • The catalyst is very stable and does not lose the activity for in total >200 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rezaei E, Dzuryk S (2019) Chem Eng Res Des 144:354–369

    Article  CAS  Google Scholar 

  2. Jang WJ, Shim JO, Kim HM, Yoo SY, Roh HS (2019) Catal Today 324:15–26

    Article  CAS  Google Scholar 

  3. Kaiwen L, Bin Y, Tao Z (2018) Energ Sourc B Econ Plann 13:109–115

    Article  CAS  Google Scholar 

  4. LeValley TL, Richard AR, Fan M (2014) Int J Hydrog Energy 39:16983–7000

    Article  CAS  Google Scholar 

  5. Lau CS, Tsolankis A, Wyszynski ML (2011) Int Hydrog Energy 36:397–404

    Article  CAS  Google Scholar 

  6. Kumar N, Shojaee M, Spivey JJ (2015) Curr Opin Chem Eng 9:8–15

    Article  CAS  Google Scholar 

  7. Aramouni NAK, Touma JG, Tarboush BA, Zeaiter J, Ahmad MN (2018) Renew Sust Energ Rev 82:2570–2585

    Article  CAS  Google Scholar 

  8. York APE, Xiao T, Green MLH, Claridge JB (2007) Catal Rev 49:511–560

    Article  CAS  Google Scholar 

  9. Iulianelli A, Liguori S, Wilcox J, Basile A (2016) Catal Rev 58:1–35

    Article  CAS  Google Scholar 

  10. Rostrup-Nielsen JR (1984) In: Andersen JR, Boudart M (eds) Catalysis, science and technology, vol 5. Springer, Berlin. Ch. 1

  11. Ruckenstein E, Wang HY (2002) J Catal 205:289–293

    Article  CAS  Google Scholar 

  12. Park JH, Yeo S, Kang TJ, Shin HR, Heo I, Chang T-S (2018) J CO2 Util 23:10–19

    Article  CAS  Google Scholar 

  13. Takanabe K, Nagaoka K, Nariai K, Aika K-I (2005) J Catal 230:75–85

    Article  CAS  Google Scholar 

  14. Abdulrasheed A, Jalil AA, Gambo Y, Ibrahim M, Hambali HU, Shahul Hamid MY (2019) Renew Sust Energ Rev 108:175–193

    Article  CAS  Google Scholar 

  15. Alves HJ, Bley Jr. C, Niklevicz RR, Frigo EP, Frigo MS, Coimbra-Arau CH (2013) Int J Hydrog Energy 38:5215–20

    Article  CAS  Google Scholar 

  16. Rostrup-Nielsen JR, Sehested J, Norskov JK (2002) Adv Catal 47:65–139

    CAS  Google Scholar 

  17. Choudhary VR, Rajput AM (1996) Ind Eng Chem Res 35:3934–3939

    Article  CAS  Google Scholar 

  18. Gangadharan P, Kanchi KC, Lou HH (2012) Chem Eng Res Des 90:1956–1968

    Article  CAS  Google Scholar 

  19. Wan Daud WMA, Usman M (2015) RSC Adv 5:21945–21972

    Article  Google Scholar 

  20. Budiman AW, Song SH, Chang TS, Shin CH, Choi MJ (2012) Catal Surv Asia 16:183–197

    Article  CAS  Google Scholar 

  21. Bradford MCJ, Vannice MA (1999) Catal Rev 41:1–42

    Article  CAS  Google Scholar 

  22. Bian Z, Kawi S (2017) J CO2 Util 18:345–352

    Article  CAS  Google Scholar 

  23. Ewbank JL, Kovarik L, Kenvin CC, Sievers C (2014) Green Chem 16:885–896

    Article  CAS  Google Scholar 

  24. Itkulova SS, Zakumbaeva GD, Nurmakanov YY, Mukazhanova AA, Yermaganbetova AK (2014) Catal Today 228:194–198

    Article  CAS  Google Scholar 

  25. Ferencz Z, Baan K, Oszko A, Konya Z, Kecskes T, Erdohelyi A (2014) Catal Today 228:123–130

    Article  CAS  Google Scholar 

  26. Horlyck J, Lawrey C, Lovell EC, Amal R, Scott J (2018) Chem Eng J 352:572–580

    Article  CAS  Google Scholar 

  27. Luisetto I, Tuti S, Bartolomeo ED (2012) Int J Hydrog Energ 37:15992–99

    Article  CAS  Google Scholar 

  28. Hou W, Wang Y, Bai Y, Sun W, Yuan W, Zheng L, Han X, Zhou L (2017) Int J Hydrog Energ 42:16459–75

    Article  CAS  Google Scholar 

  29. Shin SA, Noh YS, Hong GH, Park JI, Song HT, Lee K-Y, Moon DJ (2017) J Taiwan Inst Chem E 90:25–32

    Article  Google Scholar 

  30. Yao L, Shi J, Hu X, Shen W, Hu C (2016) Fuel Proc Tech 144:1–7

    Article  CAS  Google Scholar 

  31. Koubaissy B, Pietraszek A, Roger AC, Kiennemann A (2010) Catal Today 157:436–439

    Article  CAS  Google Scholar 

  32. Jana P, de la Pena O’Shea VA, Coronado JM, Serrano DP (2010) Int J Hydrog Energ 35:10285–94

    Article  CAS  Google Scholar 

  33. Pechini M (1967) US Patent No. 3330697

  34. Itkulova SS, Nurmakanov YY, Kussanova SK, Boleubayev YA (2018) Catal Today 299:272–279

    Article  CAS  Google Scholar 

  35. Akbar S, Hasanain SK, Azmat N, Nadeem M (2004) arXiv:cond-mat/0408480

  36. Jacobs G, Ji Y, Davis BH, Cronauer D, Kropf AJ, Marshall CL (2007) Appl Catal A-Gen 333:177–191

    Article  CAS  Google Scholar 

  37. Asencios YJO, Rodella CB, Assaf EM (2013) Appl Catal B-Environ 132-133:1–12

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Ministry of Education and Science of the Republic of Kazakhstan for sponsoring this research (Programme # PCF_BR05236739). Special thanks to the Laboratory of the Physico-Chemical Methods of the Catalyst Analysis of IFCE for providing the catalyst study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sholpan S. Itkulova.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itkulova, S.S., Boleubayev, Y.A. & Valishevskiy, K.A. Multicomponent Co-based sol–gel catalysts for dry/steam reforming of methane. J Sol-Gel Sci Technol 92, 331–341 (2019). https://doi.org/10.1007/s10971-019-05110-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05110-3

Keywords

Navigation