Skip to main content
Log in

New Insights into the Role of the Synthesis Procedure on the Performance of Co-Based Catalysts for Ethanol Steam Reforming

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Co/SiO2 catalysts with two Co contents of 10 and 30 mol% were prepared and used in ethanol steam reforming. With the aim of tailoring the materials features by varying the synthesis parameters, two different sol–gel procedures were designed, namely a modified hydrolytic alkoxide sol–gel synthesis and a (non-ionic) surfactant assisted one. Effect of the synthesis procedure on the physico-chemical properties of the prepared catalysts is in the focus of the present investigation. The obtained Co/SiO2 catalysts were characterized by means of X-rays powder diffraction, diffuse reflectance UV–Vis spectroscopy, N2 adsorption/desorption isotherms at − 196 °C, field emission scanning electron microscopy equipped with energy dispersive X-ray probe, temperature-programmed reduction and CO adsorption at nominal − 196 °C as followed by IR spectroscopy. The oxidation state of Co species within the SiO2 matrix was affected by the synthesis method. In particular, the non-ionic surfactant, acting both as pores template and as chelating agent of Co ions during the synthesis, prevented the formation of Co3O4 phase leading to a higher dispersion and higher temperature reducibility of Co species with respect to samples with same Co content synthesized without surfactant. The fine balance between Co dispersion and reducibility was the fundamental parameter governing the activity of the Co/SiO2 catalysts in terms of H2 production, CO/CO2 ratio and C balance during ethanol steam reforming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Esposito S, Setaro A, Maddalena P, Aronne A, Pernice P, Laracca M (2011) J Sol-Gel Sci Technol 60:388–394

    Article  CAS  Google Scholar 

  2. Zhang F, Zhang S, Guan N, Schreier E, Richter M, Eckelt R, Fricke R (2007) Appl Catal B 73:209–219

    Article  CAS  Google Scholar 

  3. Li N, Wang X, Derrouiche S, Haller SD, Pfefferle LD (2010) ACS Nano 4(3):1759–1767

    Article  CAS  Google Scholar 

  4. Cui H, Zhang Y, Qui Z, Zhao L, Zhu Y (2010) Appl Catal B 101:45–53

    Article  CAS  Google Scholar 

  5. Esposito S, Bonelli B, Armandi M, Garrone E, Saracco G (2015) PhysChemChemPhys 17:10774–10780

    CAS  Google Scholar 

  6. Puskas I, Fleisch TH, Full PR, Kaduk JA, Marshall CL, Meyers BL (2006) Appl Catal A 311:146–154

    Article  CAS  Google Scholar 

  7. Da Silva ALM, den Breejen JP, Mattos LV, Bitter JH, de Jong KP, Noronha FB (2014) J Catal 318:67–74

    Article  Google Scholar 

  8. Artero V, Chavarot-Kerlidou M, Fontecave M (2011) Angew Chem Int Ed 50:7238–7272

    Article  CAS  Google Scholar 

  9. Tüysüz H, Hwang YJ, Khan SB, Asiri AM, Yang P (2013) Nano Res 6(1):47–54

    Article  Google Scholar 

  10. Deng X, Tu H (2014) ACS Catal 4:3701–3714

    Article  CAS  Google Scholar 

  11. Bonelli B, Armandi M, Hernandez S, Vankova S, Celasco E, Tomatis M, Saracco G, Garrone E (2014) PhysChemChemPhys 16(15):7074–7082

    CAS  Google Scholar 

  12. Saracco G, Vankova S, Pagliano C, Bonelli B, Garrone E (2014) PhysChemChemPhys 16(13):6139–6145

    CAS  Google Scholar 

  13. Hernández S, Bensaid S, Armandi M, Sacco A, Chiodoni A, Bonelli B, Garrone E, Pirri C, Saracco G (2014) Chem Eng J 238:17–26

    Article  Google Scholar 

  14. Armandi M, Hernandez S, Vankova S, Zanarini S, Bonelli B, Garrone E (2013) ACS Catal 3(6):1272–1278

    Article  CAS  Google Scholar 

  15. Zanarini S, Vankova S, Hernandez S, Ijeri VS, Armandi M, Garrone E, Bonelli B, Onida B, Spinelli P (2012) Chem Commun 48(46):5754–5756

    Article  CAS  Google Scholar 

  16. Sohn H, Ozkan US (2016) Energy Fuel 30:5309–5322

    Article  CAS  Google Scholar 

  17. Contreras JL, Salmones J, Colín-Luna JA, Nuño L, Quintana B, Córdova I, Zeifert B, Tapia C, Fuentes GA (2014) Int J Hydrogen Energy 39:18835–18853

    Article  CAS  Google Scholar 

  18. Finocchio E, Rossetti I, Ramis G (2013) Int J Hydrogen Energy 38:3213–3225

    Article  CAS  Google Scholar 

  19. Rossetti I, Lasso J, Nichele V, Signoretto M, Finocchio E, Ramis G, Di Michele A (2014) Appl Catal B 150–151:257–267

    Article  Google Scholar 

  20. Fatsikostas AN, Verykios XE (2004) J Catal 225:439–452

    Article  CAS  Google Scholar 

  21. Vicente J, Montenero C, Ereña J, Azkoiti MJ, Bilbao J, Gayubo AG (2014) Int J Hydrogen Energy 39:12586–12596

    Article  CAS  Google Scholar 

  22. Rossetti I, Biffi C, Bianchi CL, Nichele V, Signoretto M, Menegazzo F, Finocchio E, Ramis G, Di Michele A (2012) Appl Catal B 117–118:384–396

    Article  Google Scholar 

  23. Esposito S, Turco M, Ramis G, Bagnasco G, Pernice P, Pagliuca C, Bevilacqua M, Aronne A (2007) J Solid State Chem 180:3341–3350

    Article  CAS  Google Scholar 

  24. Khodakov AY, Griboval-Constant A, Bechara R, Villain F (2001) J Phys Chem B 105:9805–9811

    Article  CAS  Google Scholar 

  25. Vizcaíno AJ, Carrero A, Calles JA (2016) Fuel Process Technol 146:99–109

    Article  Google Scholar 

  26. Minieri L, Esposito S, Russo V, Bonelli B, Di Serio M, Silvestri B, Vergara A, Aronne A (2017) ChemCatChem 9(8):1476–1486

    Article  CAS  Google Scholar 

  27. Esposito S, Sannino F, Pansini M, Bonelli B, Garrone E (2013) J Phys Chem C 117(21):11203–11210

    Article  CAS  Google Scholar 

  28. Danks AE, Hall SR, Schnepp Z (2016) Mater Horiz 3:91–112

    Article  CAS  Google Scholar 

  29. Sannino F, Ruocco S, Marocco A, Esposito S, Pansini M (2013) Microporous Mesoporous Mater 180:178–186

    Article  CAS  Google Scholar 

  30. Esposito S, Turco M, Bagnasco G, Cammarano C, Pernice P (2011) Appl Catal A 403(1–2):128–135

    Article  CAS  Google Scholar 

  31. Vinu A, Dědeček J, Murugesan V, Harmann M (2002) Chem Mater 14:2433–2435

    Article  CAS  Google Scholar 

  32. El Haskouri J, Cabrera S, Gómez-García CJ, Guillem C, Latorre J, Beltrán D, Marcos MD, Amorós P (2004) Chem Mater 16:2805–2813

    Article  Google Scholar 

  33. Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Angew Int Ed 45:3216–3251

    Article  CAS  Google Scholar 

  34. Boissièr C, Larbot A, Bourgaux C, Prouzet E, Bunton CA (2001) Chem Mater 13:3580–3586

    Article  Google Scholar 

  35. Compagnoni M, Lasso J, Di Michele A, Rossetti I (2016) Catal Sci Technol 6:6247–6257

    Article  CAS  Google Scholar 

  36. Göltner-Spickermann C (2002) Curr. Opin. Colloid Interface Sci. 7:173–178

    Article  Google Scholar 

  37. Göltner GC, Smarsly B, Berton B, Antonietti M (2001) Chem Mater 13:1617–1624

    Article  Google Scholar 

  38. Bagnasco G, Cammarano C, Turco M, Esposito S, Pernice P, Aronne A (2008) Thermochim Acta 471:51–54

    Article  CAS  Google Scholar 

  39. Bonelli B, Onida B, Chen JD, Galarneau A, Di Renzo F, Fajula F, Garrone E (2004) Microporous Mesoporous Mater 67(1):95–106

    Article  CAS  Google Scholar 

  40. Hadjivanov KI, Vayssilov GN (2002) Adv. Catal. 47:307–511

    Google Scholar 

Download references

Acknowledgements

Authors thank Dr. Mauro Raimondo (Politecnico di Torino, Italy) for FESEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Esposito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossetti, I., Bonelli, B., Ramis, G. et al. New Insights into the Role of the Synthesis Procedure on the Performance of Co-Based Catalysts for Ethanol Steam Reforming. Top Catal 61, 1734–1745 (2018). https://doi.org/10.1007/s11244-018-0969-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0969-3

Keywords

Navigation