Skip to main content
Log in

Preparation and performance of silver-incorporated antibacterial amidoximated electrospun nanofiber for uranium extraction from seawater

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

To avoid the interference of biofouling on the adsorbents towards uranium extraction from seawater, a silver-incorporated antibacterial amidoximated nanofiber adsorbent (PAO@AgNP) was designed and prepared via electrospinning in this study. The uranium adsorption experiments conducted in uranium-spiked seawater showed the material possessed good uranium adsorption capacity (11.89 mg/g), and the antibacterial experiments demonstrated that PAO@AgNP could effectively remove Escherichia coli and Staphylococcus aureus, the released silver could interrupt cellular respiration, lead to lipid peroxidation and eventually apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. NEA/IAEA (2021) Uranium 2020: resources, production and demand, Éditions OCDE, Paris. https://doi.org/10.1787/d82388ab-en

  2. Kim J (2013) Recovery of uranium from seawater: a review of current status and future research needs. Sep Sci Technol 48(3):367–387

    Article  CAS  Google Scholar 

  3. Djedidi Z (2009) Metals removal from soil, fly ash and sewage sludge leachates by precipitation and dewatering properties of the generated sludge. J Hazard Mater 172(2–3):1372–1382

    Article  CAS  PubMed  Google Scholar 

  4. Luo W (2009) Sequestering uranium and technetium through co-precipitation with aluminum in a contaminated acidic environment. Environ Sci Technol 43(19):7516–7522

    Article  CAS  PubMed  Google Scholar 

  5. Electron transfer-mediated uranium detection using quasi-Type II core shell quantum dots: insight into mechanistic pathways

  6. Ma S (2015) Efficient uranium capture by polysulfide/layered double hydroxide composites. J Am Chem Soc 137(10):3670–3677

    Article  CAS  PubMed  Google Scholar 

  7. Ayata S (2010) Sorption of uranium using silica gel with benzoylthiourea derivatives. J Radioanal Nucl Chem 285(3):525–529

    Article  CAS  Google Scholar 

  8. Kumari N (2011) Extraction studies of uranium into a third-phase of thorium nitrate employing tributyl phosphate and N,N-dihexyl octanamide as extractants in different diluents. J Radioanal Nucl Chem 289(3):835–843

    Article  CAS  Google Scholar 

  9. Zhang Z (2019) Ultralight sulfonated graphene aerogel for efficient adsorption of uranium from aqueous solutions. J Radioanal Nucl Chem 321(24):1045–1055

    Article  CAS  Google Scholar 

  10. Camp C (2014) Two-electron versus one-electron reduction of chalcogens by Uranium(III): synthesis of a terminal U(V) persulfide complex. Chem Sci 5(2):841–846

    Article  CAS  Google Scholar 

  11. Qian J (2015) Synthesis of surface ion-imprinted magnetic microspheres by locating polymerization for rapid and selective separation of Uranium(VI). RSC Adv 5(6):4153–4161

    Article  CAS  Google Scholar 

  12. Zhang T (2021) Constructing new Fe3O4@MnOx with 3D hollow structure for efficient recovery of uranium from simulated seawater. Chemosphere 283:131241

    Article  CAS  PubMed  Google Scholar 

  13. Singhal P (2017) Rapid extraction of uranium from sea water using Fe3O4 and humic acid coated Fe3O4 nanoparticles. J Hazard Mater 335:152–161

    Article  CAS  PubMed  Google Scholar 

  14. Egawa H (1979) Recovery of uranium from sea water by using chelating resins containing amidoxime groups. Nippon Kagaku Kaishi 7:958–959

    Article  Google Scholar 

  15. Hirotsu T, Katoh S, Sugasaka K et al (1986) Adsorption equilibrium of uranium from aqueous [UO2(CO3)3]4–solutions on a polymer bearing amidoxime groups. J Chem Soc Dalton Trans 9:1983–1986

    Article  Google Scholar 

  16. Saito K (1988) Recovery of uranium from seawater using amidoxime hollow fibers. AIChE J 3(34):411–416

    Article  Google Scholar 

  17. Cheng G (2021) Extremely stable amidoxime functionalized covalent organic frameworks for the uranium extraction from seawater with high efficiency and selectivity. Sci Bull 66(19):1994–2001

    Article  CAS  Google Scholar 

  18. Tang N (2020) Amidoxime-based materials for uranium recovery and removal. J Mater Chem A 8(3):7588–7625

    Article  CAS  Google Scholar 

  19. Gunathilake C (2015) Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions. J Mater Chem A 3(21):11650–11659

    Article  CAS  Google Scholar 

  20. Chen L (2017) Ultrafast and efficient extraction of uranium from seawater using an amidoxime appended metal-organic framework. ACS Appl Mater Interfaces 9(38):32446–32451

    Article  CAS  PubMed  Google Scholar 

  21. Yebra DM (2004) Antifouling technology–past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50(2):75–104

    Article  CAS  Google Scholar 

  22. Lejars M (2012) Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev 112(8):4347–4390

    Article  CAS  PubMed  Google Scholar 

  23. Uzun D (2021) A CFD study: influence of biofouling on a full-scale submarine. Appl Ocean Res 109:102561

    Article  Google Scholar 

  24. Park J (2016) Effect of biofouling on the performance of amidoxime-based polymeric uranium adsorbents. Ind Eng Chem Res 55(15):4328–4338

    Article  CAS  Google Scholar 

  25. Hu J (2016) Preparation of amidoximated ultrahigh molecular weight polyethylene fiber by radiation grafting and uranium adsorption test. Ind Eng Chem Res 55(15):4118–4124

    Article  CAS  Google Scholar 

  26. Gill GA (2016) The uranium from seawater program at the pacific northwest national laboratory: overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies. Ind Eng Chem Res 55(15):4264–4277

    Article  CAS  Google Scholar 

  27. Graf C (2003) A general method to coat colloidal particles with silica. Langmuir 19(17):6693–6700

    Article  CAS  Google Scholar 

  28. Oves M (2018) Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mater Sci Eng C 89:429–443

    Article  CAS  Google Scholar 

  29. Yin IX (2020) The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine 15:2555–2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Velmurugan P (2014) Antibacterial activity of silver nanoparticle-coated fabric and leather against odor and skin infection causing bacteria. Appl Microbiol Biotechnol 98(19):8179–8189

    Article  CAS  PubMed  Google Scholar 

  31. Raji P (2019) Greener approach for leather Tanning using less chrome with plant Tannins and Tannins mediated nanoparticles. J Clust Sci 2019(30):1533–1543

    Article  Google Scholar 

  32. Liu G (2017) PEGylated chitosan protected silver nanoparticles as water-borne coating for leather with antibacterial property. J Colloid Interface Sci 490:642–651

    Article  CAS  PubMed  Google Scholar 

  33. Dankovich TA (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45(5):1992–1998

    Article  CAS  PubMed  Google Scholar 

  34. Xu Q (2019) Synthesis of silver nanoparticles using dialdehyde cellulose nanocrystal as a multi-functional agent and application to antibacterial paper. Cellulose 26(2):1309–1321

    Article  CAS  Google Scholar 

  35. De Moura MR (2012) Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J Food Eng 109(3):510–524

    Article  Google Scholar 

  36. Istiqola A (2020) A review of silver nanoparticles in food packaging technologies: regulation, methods, properties, migration and future challenges. J Chin Chem Soc 67(11):1942–1956

    Article  CAS  Google Scholar 

  37. Ballottin D (2017) Antimicrobial textiles: biogenic silver nanoparticles against Candida and Xanthomonas. Mater Sci Eng C 75(1):582–589

    Article  CAS  Google Scholar 

  38. Mahltig B (2014) Preparation of silver nanoparticles suitable for textile finishing processes to produce textiles with strong antibacterial properties against different bacteria types. Z Naturforsch B Chem Sci 66(9):905–916

    Article  Google Scholar 

  39. Wagener S (2016) Textile functionalization and its effects on the release of silver nanoparticles into artificial sweat. Environ Sci Technol 50(11):5927–5934

    Article  CAS  PubMed  Google Scholar 

  40. Praveena SM (2015) Application of low-cost materials coated with silver nanoparticles as water filter in Escherichia coli removal. Water Qual Expo Health 7:617–625

    Article  CAS  Google Scholar 

  41. Fahmy HM (2019) Coated silver nanoparticles: synthesis, cytotoxicity and optical properties. RSC Adv 9:20118–20136

    Article  CAS  Google Scholar 

  42. Doolette CL (2013) Transformation of PVP coated silver nanoparticles in a simulated wastewater treatment process and the effect on microbial communities. Chem Cent J 7:46

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kang H (2019) Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities. Chem Rev 119(1):664–699

    Article  CAS  PubMed  Google Scholar 

  44. Das S (2021) Effect of stabilizer concentration on the size of silver nanoparticles synthesized through chemical route. Inorg Chem Commun 123:108319

    Article  CAS  Google Scholar 

  45. Li X (2012) Facile synthesis of silver nanoparticles with high concentration via a CTAB-induced silver mirror reaction. Colloids Surf A 400:447–453

    Article  Google Scholar 

  46. Venkatesham M (2014) A novel green one-step synthesis silver nanoparticles using chitosan: catalytic activity and antimicrobial studies. Appl Nanosci 4:113–119

    Article  CAS  Google Scholar 

  47. Abdul kareem K, (2011) Synthesis and thermal study of octahedral silver nanoplates in polyvinyl alcohol (PVA). Arab J Chem 4:325–331

    Article  Google Scholar 

  48. Lu X (2011) A preliminary study of the microbial resources and their biological activities of the East China Sea. Evid Based Complem Altern Med. 2011:806485

    Article  Google Scholar 

  49. Yu SX (2018) Distribution of bacterial communities along the spatial and environmental gradients from Bohai Sea to northern Yellow Sea. PeerJ 2018(6):e4272

    Article  Google Scholar 

  50. Shan D (2015) Distribution and diversity of bacterioplankton communities in subtropical seawater around Xiamen Island, China. Microbiol Res 175:16–23

    Article  CAS  PubMed  Google Scholar 

  51. Zhang Y (2018) Community differentiation of bacterioplankton in the epipelagic layer in the South China Sea. Ecol Evol 8(10):4932–4948

    Article  PubMed  PubMed Central  Google Scholar 

  52. Feng BW (2009) Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. FEMS Microbiol Ecol 70(2):80–92

    Article  PubMed  Google Scholar 

  53. Sun FL (2015) Spatial and vertical distribution of bacterial community in the northern South China Sea. Ecotoxicology 24(7–8):1478–1485

    Article  CAS  PubMed  Google Scholar 

  54. He Y (2017) Distinct seasonal patterns of bacterioplankton abundance and dominance of Phyla α-Proteobacteria and Cyanobacteria in Qinhuangdao coastal waters off the Bohai Sea. Front Microbio 8:1579

    Article  Google Scholar 

  55. Zhang Y (2007) Dynamics of aerobic anoxygenic phototrophic bacteria in the East China Sea. FEMS Microbiol Ecol 61(3):459–469

    Article  CAS  PubMed  Google Scholar 

  56. Zhang A (2003) The adsorption mechanism of uranium(VI) from seawater on a macroporous fibrous polymeric adsorbent containing amidoxime chelating functional group. React Funct Polym 57(1):67–76

    Article  CAS  Google Scholar 

  57. Krestou A (2004) Uranium (VI) speciation diagrams in the UO22+/CO32-/H2O system at 25°C. Eur J Miner Process Environ Prot 4:113

    Google Scholar 

  58. Wei J (2014) Novel method to graft chitosan on the surface of hydroxyapatite nanoparticles via"click" reaction. Chem Res Chin Univ 30(6):1063–1065

    Article  Google Scholar 

  59. Zhao D (2020) An amidoxime-functionalized polypropylene fiber: Competitive removal of Cu(II), Pb(II) and Zn(II) from wastewater and subsequent sequestration in cement mortar. J Clean Prod 274(20):123049

    Article  CAS  Google Scholar 

  60. Wang C (2017) Complexation of vanadium with amidoxime and carboxyl groups: uncovering the competitive role of vanadium in uranium extraction from seawater. Radiochim Acta 105(7):541–553

    Article  CAS  Google Scholar 

  61. Carlson C (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43):13608–13619

    Article  CAS  PubMed  Google Scholar 

  62. Schmidt M (2003) Oxygen and silver clusters: transition from chemisorption to oxidation. Phys Rev Lett 91(24):243401

    Article  CAS  PubMed  Google Scholar 

  63. Xiong Y (2013) The role of surface chemistry on the toxicity of Ag nanoparticles. Small 9(15):2628–2638

    Article  CAS  PubMed  Google Scholar 

  64. Asharani PV (2008) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  Google Scholar 

  65. Holt KB (2005) Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochem 44(39):13214–13223

    Article  CAS  Google Scholar 

  66. Singh A (2014) Carbon nanotube-induced loss of multicellular chirality on micropatterned substrate is mediated by oxidative stress. ACS Nano 8:2196–2205

    Article  CAS  PubMed  Google Scholar 

  67. Porter NA (2013) A perspective on free radical autoxidation: the physical organic chemistry of polyunsaturated fatty acid and sterol peroxidation. J Org Chem 78(8):3511–3524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rival T (2013) Alteration of plasma phospholipid fatty acid profile in patients with septic shock. Biochimie 95(11):2177–2181

    Article  CAS  PubMed  Google Scholar 

  69. Mats J (2000) Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol 32(2):157–170

    Article  Google Scholar 

  70. Xu H (2012) Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7. Biometals 25(1):45–53

    Article  CAS  PubMed  Google Scholar 

  71. Matsumura Y (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69(7):4278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is financially supported by the National Natural Science Foundation of China (21876073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suwen Chen.

Ethics declarations

Conflict of interest

We declare that we have no know competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PNG 121 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Qu, C., Jiang, C. et al. Preparation and performance of silver-incorporated antibacterial amidoximated electrospun nanofiber for uranium extraction from seawater. J Radioanal Nucl Chem 331, 427–438 (2022). https://doi.org/10.1007/s10967-021-08087-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08087-y

Keywords

Navigation