Skip to main content
Log in

Preparation of porous amidoximated nanofibers with antibacterial properties, and experiments on uranium extraction from seawater

  • Manuscript
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A novel porous adsorbent, named silver-loaded amidoximated polyacrylonitrile porous nanofibers (Ag@AO-PAN PNF), with both adsorption and antibacterial properties, was designed and synthesized by using polyvinylpyrrolidone (PVP) as porogen, amidoxime group as uranium adsorption group, and nano-silver as antibacterial agent. Results of adsorption experiments in uranium-spiked natural seawater showed that the nanofibers had good adsorption capacity for uranium (the maximum uranium uptake was 34.7 mg/g). On the other hand, Ag@AO-PAN PNF also exhibited excellent antibacterial activity against both E. coli and S. aureus, which could effectively inhibit adhesion of these bacteria to the surface of the adsorbent. The adsorption experiments carried out in bacteria-containing environment also demonstrated that the presence of nano-silver effectively inproved the adsorption capacity of the material towards uranium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Referencens

  1. Uranium 2020 (2021) Resources, production and demand: Nuclear Energy Agency and International Atomic Energy Agency

  2. The Nuclear Fuel Report (2021) Global scenarios for demand and supply availability 2021–2040: World Nuclear Association

  3. Davies RV, Kennedy J, Mcilroy RW et al (1964) Extraction of uranium from sea water. Nature 203(4950):1110–1115

    Article  Google Scholar 

  4. Chouyyok W, Pittman JW, Warner MG et al (2016) Surface functionalized nanostructured ceramic sorbents for the effective collection and recovery of uranium from seawater. Dalton Trans 45(28):11312–11325

    Article  CAS  PubMed  Google Scholar 

  5. Parker BF, Zhang Z, Rao L et al (2018) An overview and recent progress in the chemistry of uranium extraction from seawater. Dalton Trans 47(3):639–644

    Article  CAS  PubMed  Google Scholar 

  6. Golzhauser A, Woll C (2010) Interfacial systems chemistry: out of the vacuum—through the liquid—into the cell. Phys Chem Chem Phys 12(17):4273–4274

    Article  PubMed  Google Scholar 

  7. Gholap H, Warule S, Sangshetti J et al (2016) Hierarchical nanostructures of Au@ZnO: antibacterial and antibiofilm agent. Appl Microbiol Biotechnol 100(13):5849–5858

    Article  CAS  PubMed  Google Scholar 

  8. Kanno M (1984) Present status of study on extraction of uranium from sea-water. J Nucl Sci Technol 21(1):1–9

    Article  CAS  Google Scholar 

  9. Maher K, Bargar JR, Brown GE (2013) Environmental speciation of actinides. Inorg Chem 52(7):3510–3532

    Article  CAS  PubMed  Google Scholar 

  10. Gupta SK, Rathore NS, Sonawane JV et al (2007) Dispersion-free solvent extraction of U(VI) in macro amount from nitric acid solutions using hollow fiber contactor. J Membr Sci 300(1–2):131–136

    Article  CAS  Google Scholar 

  11. Kumari N, Prabhu DR, Pathak PN et al (2011) Extraction studies of uranium into a third-phase of thorium nitrate employing tributyl phosphate and N, N-dihexyl octanamide as extractants in different diluents [J]. J Radioanal Nucl Chem 289(3):835–843

    Article  CAS  Google Scholar 

  12. More PS, Barache UB, Gaikwad SH et al (2022) Extraction of Th(IV) and U(VI) with 4-methyl-N–n-octylaniline as an extracting agent. J Radioanal Nucl Chem 331:4149

    Article  CAS  Google Scholar 

  13. Loganathan P, Naidu G, Vigneswaran S (2017) Mining valuable minerals from seawater: a critical review. Environ Sci Water Res Technol 3(1):37–53

    Article  CAS  Google Scholar 

  14. Kim J, Tsouris C, Oyola Y et al (2014) Uptake of uranium from seawater by amidoxime-based polymeric adsorbent: field experiments, modeling, and updated economic assessment. Ind Eng Chem Res 53(14):6076–6083

    Article  CAS  Google Scholar 

  15. Zhang X, Zhao W, Zhang Y et al (2021) A review of resource recovery from seawater desalination brine. Rev Environ Sci Bio/Technol 20(2):333–361

    Article  CAS  Google Scholar 

  16. Liao J, Liu P, Xie Y et al (2021) Metal oxide aerogels: preparation and application for the uranium removal from aqueous solution. Sci Total Environ 768:144212

    Article  CAS  PubMed  Google Scholar 

  17. Basu H, Singhal RK, Pimple MV et al (2015) Synthesis and characterization of silica microsphere and their application in removal of uranium and thorium from water. Int J Environ Sci Technol 12(6):1899–1906

    Article  CAS  Google Scholar 

  18. Yin X, Bai J, Fan F et al (2015) Amidoximed silica for uranium(VI) sorption from aqueous solution. J Radioanal Nucl Chem 303(3):2135–2142

    CAS  Google Scholar 

  19. Wang X, Yuan L, Wang Y et al (2012) Mesoporous silica SBA-15 functionalized with phosphonate and amino groups for uranium uptake. Science China-Chem 55(9):1705–1711

    Article  CAS  Google Scholar 

  20. Egawa H, Harada H, Shuto T (1980) Studies on selective adsorption resins 13. Rcvovery of uranium from seawater by the use of chelation resins containing amidoxime groups. Nippon Kagaku Kaishi 11:1773–1776

    Article  Google Scholar 

  21. Hirotsu T, Katoh S, Sugasaka K et al (1987) Adsorption of uranium on cross-linked amidoxiem polymer from seawater. Ind Eng Chem Res 26(10):1970–1977

    Article  CAS  Google Scholar 

  22. Omichi H, Katakai A, Sugo T et al (1985) A new type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater. Sep Sci Technol 20(2–3):163–178

    Article  CAS  Google Scholar 

  23. Das S, Pandey AK, Athawale A et al (2008) Chemical aspects of uranium recovery from seawater by amidoximated electron-beam-grafted polypropylene membranes. Desalination 232(1–3):243–253

    Article  CAS  Google Scholar 

  24. Starvin AM, Rao TP (2004) Solid phase extractive preconcentration of uranium(VI) onto diarylazobisphenol modified activated carbon. Talanta 63(2):225–232

    Article  CAS  PubMed  Google Scholar 

  25. Liu C, Hsu P-C, Xie J et al (2017) A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat Energy 2(4):17007

    Article  CAS  Google Scholar 

  26. Luo B-C, Yuan L-Y, Chai Z-F et al (2016) U(VI) capture from aqueous solution by highly porous and stable MOFs: UiO-66 and its amine derivative. J Radioanal Nucl Chem 307(1):269–276

    Article  CAS  Google Scholar 

  27. Bai C, Li J, Liu S et al (2014) In situ preparation of nitrogen-rich and functional ultramicroporous carbonaceous COFs by “segregated” microwave irradiation. Microporous Mesoporous Mater 197:148–155

    Article  CAS  Google Scholar 

  28. Rao LF (2012) Application of radiation grafting: progress and status of the extraction of uranium from seawater in Japan. Ind Eng Chem Res 25(3):129–139

    CAS  Google Scholar 

  29. Xiong J, Wen J, Sheng HU et al (2015) Progress in extracting uranium from seawater of China. Atomic Energy Sci Technol 37(5):257–265

    CAS  Google Scholar 

  30. Wen J, Li Q, Li H et al (2018) Nano-TiO2 imparts amidoximated wool fibers with good antibacterial activity and adsorption capacity for uranium(VI) recovery. Ind Eng Chem Res 57(6):1826–1833

    Article  CAS  Google Scholar 

  31. Ao J-X, Yuan Y-H, Xu X et al (2019) Trace zinc-preload for enhancement of uranium adsorption performance and antifouling property of AO-functionalized UHMWPE fiber. Ind Eng Chem Res 58(19):8026–8034

    Article  CAS  Google Scholar 

  32. Zhang H, Zhang L, Han X et al (2018) Guanidine and amidoxime cofunctionalized polypropylene nonwoven fabric for potential uranium seawater extraction with antifouling property. Ind Eng Chem Res 57(5):1662–1670

    Article  CAS  Google Scholar 

  33. Sun Y, Liu R, Wen S et al (2021) Antibiofouling ultrathin poly(amidoxime) membrane for enhanced U(VI) recovery from wastewater and seawater. ACS Appl Mater Interfaces 13(18):21272–21285

    Article  CAS  PubMed  Google Scholar 

  34. Kuo LJ, Pan HB, Wai CM et al (2017) Investigations into the reusability of amidoxime-based polymeric adsorbents for seawater uranium extraction. Ind Eng Chem Res 56(40):11603–11611

    Article  CAS  Google Scholar 

  35. Sun RP, Qu C, Jiang C et al (2022) Preparation and performance of silver-incorporated antibacterial amidoximated electrospun nanofiber for uranium extraction from seawater. J Radioanal Nucl Chem 331(1):427–438

    Article  CAS  Google Scholar 

  36. Saeed K, Haider S, Oh T-J et al (2008) Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. J Membr Sci 322(2):400–405

    Article  CAS  Google Scholar 

  37. Zhang YF, Guan JM, Wang XF et al (2017) Balsam-pear-skin-like porous polyacrylonitrile nanofibrous membranes grafted with polyethyleneimine for postcombustion CO2 capture. ACS Appl Mater Interfaces 9(46):41087–41098

    Article  CAS  PubMed  Google Scholar 

  38. Qin JJ, Wong FS, Li Y et al (2003) A high flux ultrafiltration membrane spun from PSU/PVP (K90)/DMF/1,2-propanediol. J Membr Sci 211(1):139–147

    Article  CAS  Google Scholar 

  39. Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10(3):339–354

    Article  Google Scholar 

  40. Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353

    Article  CAS  PubMed  Google Scholar 

  41. PanáčEk A, Kvítek L, Prucek R et al (2006) Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity. J Phys Chem B 110:16248

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (21876073)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suwen Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Qu, C., Meng, X. et al. Preparation of porous amidoximated nanofibers with antibacterial properties, and experiments on uranium extraction from seawater. J Radioanal Nucl Chem 332, 669–682 (2023). https://doi.org/10.1007/s10967-023-08806-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08806-7

Keywords

Navigation