Skip to main content
Log in

Study on the orientation structure and thermal dimensional stability of polyimide films based on infrared dichroism method

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of uniaxially oriented polyimide (PI) films were fabricated via hot drawing at varying temperatures and draw ratios, and their orientation structure and thermal dimensional stability were investigated in detail. The infrared dichroism based on C = O symmetrical stretching was employed to effectively determine the orientation of chain segments. Other characteristic peaks, such as C = O asymmetric and C-N stretching, were highly sensitive to the geometric structure of chain segments, thereby providing a valuable means for comprehending their morphology. It has been observed that lower thermal expansion coefficient (CTE) can be achieved through low-temperature stretching, while high-temperature stretching is more effective in suppressing thermal shrinkage of the film. By quantitatively analyzing the orientation structure of infrared groups, the minimum structural unit highly associated with CTE was determined. These findings help to deepen our understanding of PI film performance and provide new ideas for studying thermal dimensional stability and draw processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Seo K, Nam KH, Lee S, Han H (2019) Polyimide/organosilicate nanocomposites: Residual stress behavior on Si wafer for multichip packaging. Mater Lett 247:171–173

    Article  CAS  Google Scholar 

  2. Nishino T, Kotera M, Inayoshi N, Miki N, Nakamae K (2000) Residual stress and microstructures of aromatic polyimide with different imidization processes. Polymer 41:6913–6918

    Article  CAS  Google Scholar 

  3. Sham ML, Kim JK (2005) Curing behavior and residual stresses in polymeric resins used for encapsulanting electronic packages. J Appl Polym Sci 96:175–182

    Article  CAS  Google Scholar 

  4. Struik LCE (1978) Orientation effects and cooling stresses in amorphous polymers. Polym Eng Sci 18:799–811

    Article  CAS  Google Scholar 

  5. Noyan IC, Nguyen LT (1988) Residual stresses in polymeric passivation and encapsulation materials. Polym Eng Sci 28:1026–1033

    Article  CAS  Google Scholar 

  6. Li H, Cheng G, Xu GW, Luo L (2016) Influence of polyimide on thermal stress evolution in polyimide/Cu thick film composite. J Mater Sci Mater Electron 27:8325–8331

    Article  CAS  Google Scholar 

  7. Numata SI, Oohara S, Fujisaki K, Imaizumi JI, Kinjo N (1986) Thermal expansion behavior of various aromatic polyimides. J Appl Polym Sci 31:101–110

    Article  CAS  Google Scholar 

  8. Lao HJ, Mushtaq N, Chen GF, Wang BY, Ba YX, Fang XZ (2021) Synthesis and properties of transparent random and multi-block polyamide-imide films with high modulus and low CTE. Eur Polym J 153

    Article  CAS  Google Scholar 

  9. Zhu L, Li YN, Han SH, Niu HQ, Wu DZ, Qi SL (2021) Revealing the high-modulus mechanism of polyimide films prepared with 3,4′-ODA. Polymers 13:3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang TT, Yang ZH, Piao FY, Guo HQ (2022) Transparent polyimide films with ultra-low coefficient of thermal expansion. High Perform Polym 34:871–879

    Article  CAS  Google Scholar 

  11. Hung YT, Chen CK, Lin YC, Yu YY, Chen WC (2022) Dimensionally thermally stable biomass-based polyimides for flexible electronic applications. Polym J 54:1489–1499

    Article  CAS  Google Scholar 

  12. Luo LB, Pang YW, Jiang X, Wang X, Zhang P, Chen Y, Peng CR, Liu XY (2012) Preparation and characterization of novel polyimide films containing amide groups. J Polym Res 19:9783

    Article  Google Scholar 

  13. Yang ZH, Ma PC, Li FR, Guo HQ, Kang CQ, Gao LX (2021) Ultrahigh thermal-stability polyimides with low CTE and required flexibility by formation of hydrogen bonds between poly(amic acid)s. Eur Polym J 148

    Article  CAS  Google Scholar 

  14. Ishige R, Tanaka K, Ando S (2017) In situ analysis of chain orientation behavior in thin film aromatic polyimides by variable temperature pMAIRS during thermal imidization. Macromol Chem Phys 219:1700370

    Article  Google Scholar 

  15. Jo BW, Ahn KH, Lee SJ (2014) Effect of thermal history during drying and curing process on the chain orientation of rod-shaped polyimide. Polymer 55:5829–5836

    Article  CAS  Google Scholar 

  16. Hasegawa M, Matano T, Shindo Y, Sugimura T (1996) Spontaneous molecular orientation of polyimides induced by thermal imidization. 2. In-plane orientation. Macromolecules 29:7897–7909

    Article  ADS  CAS  Google Scholar 

  17. Tong HM, Saenger KL, Su GW (1993) Thickness-direction thermal expansion of polyimide films. Polym Eng Sci 33:1502–1506

    Article  CAS  Google Scholar 

  18. Okada T, Ishige R, Ando S (2018) Effects of chain packing and structural isomerism on the anisotropic linear and volumetric thermal expansion behaviors of polyimide films. Polymer 146:386–395

    Article  CAS  Google Scholar 

  19. Zhai Y, Yang Q, Zhu R, Gu Y (2007) The study on imidization degree of polyamic acid in solution and ordering degree of its polyimide film. J Mater Sci 43:338–344

    Article  ADS  Google Scholar 

  20. Hao FY, Wang JH, Qi SL, Tian GF, Wu DZ (2020) Structures and properties of polyimide with different pre-imidization degrees. Chinese J Polym Sci 38:840–846

    Article  CAS  Google Scholar 

  21. Lin DL, Li RY, Li TF, Zi YC, Qi SL, Wu DZ (2021) Effects of pre-imidization on rheological behaviors of polyamic acid solution and thermal mechanical properties of polyimide film: an experiment and molecular dynamics simulation. J Mater Sci 56:14518–14530

    Article  ADS  CAS  Google Scholar 

  22. Lin DL, Li TF, Li RY, Qi SL, Wu DZ (2021) Structures and properties of polyimide fibers prepared via gel spinning induced by chemical imidization. Polymer 238

    Article  Google Scholar 

  23. Du J, Pu CZ, Sun XY, Wang Q, Niu HQ, Wu DZ (2023) Preparation and interfacial properties of hydroxyl-containing polyimide fibers. Polymers 15:1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun M, Chang JJ, Tian GF, Niu HQ, Wu DZ (2015) Preparation of high-performance polyimide fibers containing benzimidazole and benzoxazole units. J Mater Sci 51:2830–2840

    Article  ADS  Google Scholar 

  25. Chang JJ, Niu HQ, Zhang MY, Ge QY, Li Y, Wu DZ (2015) Structures and properties of polyimide fibers containing ether units. J Mater Sci 50:4104–4114

    Article  ADS  CAS  Google Scholar 

  26. Zhang QH, Dai M, Ding MX, Chen DJ, Gao LX (2004) Mechanical properties of BPDA–ODA polyimide fibers. Eur Polym J 40:2487–2493

    Article  CAS  Google Scholar 

  27. Wang LN, Yu XH, Wang DM, Zhao XG, Yang D, urRehman S, Chen CH, Zhou HW, Dang GD (2013) High modulus and high strength ultra-thin polyimide films with hot-stretch induced molecular orientation. Mater Chem Phys 139:968–974

    Article  CAS  Google Scholar 

  28. Simpson GJ, Rowlen KL (1985) Determination of molecular orientation by spectroscopic techniques. Adv Polym Sci 66:81–115

    Article  Google Scholar 

  29. Simpson GJ, Rowlen KL (2000) Measurement of orientation in organic thin films. Acc Chem Res 33:781–789

    Article  CAS  PubMed  Google Scholar 

  30. Svenningsson L, Lin YC, Karlsson M, Martinelli A, Nordstierna L (2019) molecular orientation distribution of regenerated cellulose fibers investigated with polarized raman spectroscopy. Macromolecules 52:3918–3924

    Article  ADS  CAS  Google Scholar 

  31. Rodríguez-Pérez JC, Hamley IW, Squires AM (2013) Determination of orientations of aromatic groups in self-assembled peptide fibrils by polarised Raman spectroscopy. Phys Chem Chem Phys 15:13940–13950

    Article  PubMed  Google Scholar 

  32. Svenningsson L, Nordstierna L (2020) Polarized raman spectroscopy strategy for molecular orientation of polymeric fibers with raman tensors deviating from the molecular frame. ACS Appl Polym Mater 2:4809–4813

    Article  CAS  Google Scholar 

  33. Postolache M, Dimitriu DG, Nechifor CD, Bota SC, Closca V, Dorohoi DO (2022) Birefringence of thin uniaxial polymer films estimated using the light polarization ellipse. Polymers 14:1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. King JS, Lee WC, Chang LM, Whang WT (2007) Structural effect on stretch-induced birefringence in polyimide films. Jpn J Appl Phys 46:6801

    Article  ADS  CAS  Google Scholar 

  35. Wang X, Huang L, Liu XY (2012) Study of the orientation of liquid crystal molecules on polyimide alignment films by FTIR with polarisation mode. Liq Cryst 39:813–817

    Article  CAS  Google Scholar 

  36. Sornkamnerd S, Sasaki S, Mitsumata T, Takada K, Okada T, Ando S, Kaneko T (2021) orientation analysis of polymer chains in optically transparent biopolyimides having rigid and bending backbones. ChemistrySelect 6:6525–6532

    Article  CAS  Google Scholar 

  37. Hatori H, Yamada Y, Shiraishi M, Yoshihara M, Kimura T (1996) The mechanism of polyimide pyrolysis in the early stage. Carbon 34:201–208

    Article  CAS  Google Scholar 

  38. Burba CM, Frech R, Grady B (2007) Stretched PEO–LiCF3SO3 films: Polarized IR spectroscopy and X-ray diffraction. Electrochim Acta 53:1548–1555

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51773007).

Funding

National Natural Science Foundation of China,51773007,Guofeng Tian

Author information

Authors and Affiliations

Authors

Contributions

Jianhua Wang: Methodology, Investigation, Writing-original draft. Gaojie Wu: Methodology, Validation. Guofeng Tian: Conceptualization, Methodology, Writing − review & editing, Funding acquisition, Supervision. Shengli Qi: Resources, Writing − review & editing. Dezhen Wu: Writing − review & editing, Supervision.

Corresponding authors

Correspondence to Guofeng Tian or Dezhen Wu.

Ethics declarations

Ethical approval

Not Applicable in this work.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wu, G., Tian, G. et al. Study on the orientation structure and thermal dimensional stability of polyimide films based on infrared dichroism method. J Polym Res 31, 25 (2024). https://doi.org/10.1007/s10965-023-03866-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03866-5

Keywords

Navigation