Skip to main content
Log in

Influence of polyimide on thermal stress evolution in polyimide/Cu thick film composite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polyimide(PI)/Cu composite thick films are widely used in wafer level packaging (WLP), and a common problem is the defects such as void, delamination, crack or wafer warpage induced by thermal stress. Compared with traditional rigid substrate/Cu/passivation system, PI imposes quite a different boundary constraint on Cu, resulting in a special stress evolution, and the corresponding mechanism is far from fully understood. Five sets of composites are constructed to investigate the influence of PI on thermal stress evolution in Cu film by means of in situ wafer warpage measurement under thermal cycling. Together with finite element analyses, it’s counterintuitive to find that although PI indeed reduces the stress in Cu, it exacerbates overall wafer warpage at room temperature. Warpage evolution reveals that composites consisting of substrate/PI/Cu sustains a moderate compressive stress while bare PI film is totally stress relaxed at high temperature, indicating that Cu and PI restrains stress relaxation reciprocally. It suggests that mutual effect should be considered when evaluating the stress distribution in polymer-metal composite thick films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Brunner, A. Mogilatenko, A. Knauer et al., J Appl Phys. 112(3), 033503 (2012)

    Article  Google Scholar 

  2. H. J. Kim, S. C. Chong, D. S. W. Ho et al., in 2011 IEEE 61st Electronic Components and Technology Conference (Ectc), (2011), pp. 78–83

  3. S.S. Deng, S.J. Hwang, H.H. Lee, IEEE Trans Comp. Pack Man 3(3), 452–458 (2013)

    Google Scholar 

  4. N. P. Pham, M. Rosmeulen, G. Bryce et al., in Proceedings of the 2012 IEEE 14th Electronics Packaging Technology Conference, (2012), pp. 202–205

  5. A. Tay, W. K. Ho, N. Hu et al., Rev Sci Instrum. 76(7), 075111 (2005)

    Article  Google Scholar 

  6. S.J. Hwang, Y.C. Joo, J. Koike, Thin Solid Films 516(21), 7588–7594 (2008)

    Article  Google Scholar 

  7. S.J. Hwang, Y.C. Joo, J. Koike, Thin Films-Stresses Mech. Prop. X 795, 205–210 (2004)

    Article  Google Scholar 

  8. E.S. Ege, Y.L. Shen, J. Electron. Mater. 32(10), 1000–1011 (2003)

    Article  Google Scholar 

  9. D. Weiss, H. Gao, E. Arzt, Acta Mater. 49(13), 2395–2403 (2001)

    Article  Google Scholar 

  10. R.M. Keller, S.P. Baker, E. Arzt, J. Mater. Res. 13(5), 1307–1317 (1998)

    Article  Google Scholar 

  11. S.P. Baker, A. Kretschmann, E. Arzt, Acta Mater. 49(12), 2145–2160 (2001)

    Article  Google Scholar 

  12. Y.L. Shen, U. Ramamurty, J. Appl. Phys. 93(3), 1806–1812 (2003)

    Article  Google Scholar 

  13. D. W. Gan, P. S. Ho, R. Huang et al., J Appl Phys. 97(10), 103531 (2005)

    Article  Google Scholar 

  14. E. Chason, J. W. Shin, S. J. Hearne et al., J Appl Phys. 111(8), 083520 (2012)

    Article  Google Scholar 

  15. H. Gao, L. Zhang, W.D. Nix et al., Acta Mater. 47(10), 2865–2878 (1999)

    Article  Google Scholar 

  16. D.W. Gan, P.S. Ho, Y.Y. Pang et al., J. Mater. Res. 21(6), 1512–1518 (2006)

    Article  Google Scholar 

  17. D. Chocyk, A. Proszynski, G. Gladyszewski, Microelectron. Eng. 85(10), 2179–2182 (2008)

    Article  Google Scholar 

  18. G. Dehm, M. Legros, B. Heiland, J. Mater. Sci. 41(14), 4484–4489 (2006)

    Article  Google Scholar 

  19. R. Schwaiger, G. Dehm, O. Kraft, Phil. Mag. 83(6), 693–710 (2003)

    Article  Google Scholar 

  20. B. von Blanckenhagen, E. Arst, P. Gumbsch, Acta Mater. 52(3), 773–784 (2004)

    Article  Google Scholar 

  21. W. Oh, T.J. Shin, M. Ree et al., Macromol. Chem. Phys. 203(5–6), 801–811 (2002)

    Article  Google Scholar 

  22. S.T. Chen, C.H. Yang, F. Faupel et al., J. Appl. Phys. 64(12), 6690–6698 (1988)

    Article  Google Scholar 

  23. D.M. Shinozaki, A. Klauzner, P.C. Cheng, Mater. Sci. Eng. Struct. 142(1), 135–144 (1991)

    Article  Google Scholar 

  24. I. Yadav, S. Dutta, A. Katiyar et al., Mater. Lett. 158, 343–346 (2015)

    Article  Google Scholar 

  25. M. Chao, K.C. Kou, G.L. Wu et al., J. Macromol. Sci. B 51(10), 2003–2014 (2012)

    Article  Google Scholar 

  26. M. Chao, K.C. Kou, G.L. Wu et al., J Macromol. Sci. A 49(7), 578–585 (2012)

    Article  Google Scholar 

  27. Y. Wang, K. Kou, G. Wu et al., Polymer 77, 354–360 (2015)

    Article  Google Scholar 

  28. Y.Q. Wang, K.C. Kou, W. Zhao et al., Rsc Adv. 5(120), 99313–99321 (2015)

    Article  Google Scholar 

  29. G.L. Wu, K.C. Kou, M. Chao et al., Thermochim. Acta 537, 44–50 (2012)

    Article  Google Scholar 

  30. G.L. Wu, K.C. Kou, L.H. Zhuo et al., Thermochim. Acta 559, 86–91 (2013)

    Article  Google Scholar 

  31. G. L. Wu, Y. H. Cheng, Q. Xie et al., J. Polym. Res. 21(12), (2014)

  32. G.L. Wu, K.C. Kou, N. Li et al., J. Appl. Polym. Sci. 128(2), 1164–1169 (2013)

    Article  Google Scholar 

  33. Y.H.C.G.L. Wu, K.K. Wang et al., J Mater. Sci.: Mater Electron. (2016). doi:10.1007/s10854-016-4464-y

    Google Scholar 

  34. R. Huang, D. Gan, P.S. Ho, J Appl Phys. 97(10), 103532 (2005)

    Article  Google Scholar 

  35. S.-K. Ryu, T. Jiang, K.H. Lu et al., Appl Phys Lett 100(4), 041901 (2012)

    Article  Google Scholar 

  36. C.S. Zhu, W.G. Ning, G.W. Xu et al., J. Electron. Mater. 43(9), 3255–3262 (2014)

    Article  Google Scholar 

  37. G.G. Stoney, Proc. R. Soc Lond A-Conta 82(553), 172–175 (1909)

    Article  Google Scholar 

  38. M.A. Hopcroft, W.D. Nix, T.W. Kenny, J. Microelectromech. S 19(2), 229–238 (2010)

    Article  Google Scholar 

  39. H. Ledbetter, E. Naimon, J. Phys. Chem. Ref. Data 3(4), 897–935 (1974)

    Article  Google Scholar 

  40. R.P. Vinci, E.M. Zielinski, J.C. Bravman, Thin Solid Films 262(1–2), 142–153 (1995)

    Article  Google Scholar 

  41. M.D. Thouless, J. Gupta, J.M.E. Harper, J. Mater. Res. 8(8), 1845–1852 (1993)

    Article  Google Scholar 

  42. Y. Huang, S. Qu, K.C. Hwang et al., Int. J. Plast. 20(4–5), 753–782 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Number NSFC61574154) and Natural Science Foundation of Shanghai (No. 13ZR1447300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Cheng, G., Xu, G. et al. Influence of polyimide on thermal stress evolution in polyimide/Cu thick film composite. J Mater Sci: Mater Electron 27, 8325–8331 (2016). https://doi.org/10.1007/s10854-016-4841-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4841-6

Keywords

Navigation