Skip to main content
Log in

Effect of Aggregation Structure on Thermal Expansion Behavior of Polyimide Films with Different Thickness

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polyimide films derived from representative PMDA/ODA were prepared with thickness ranging from 5 µm to 25 µm, and the effect of aggregation structure on thermal expansion behavior along different directions was studied. Both in-plane and out-of-plane linear thermal expansion (CTF// and CTF) were respectively characterized by thermal mechanical analysis and FT-near-IR interference method. Volumetric and anisotropic behavior of thermal expansion were also investigated. With increasing film thickness, CTF// gradually increased from 32.2 ppm/°C to 46.1 ppm/°C while CTF decreased from 149.7 ppm/°C to 128.2 ppm/°C. Volumetric thermal expansion of polyimide films was less sensitive to the varied thickness, but anisotropy of thermal expansion was reduced. Polyimide film of 5 µm thickness showed large birefringence, indicating more considerable in-plane chain orientation anisotropy. Besides, molecular chains were more densely packed along in-plane direction when film thickness increased, while became loosely stacked in the out-of-plane direction. In contrast to the enhanced lateral chain packing for thicker films, higher vertical chain packing order was found in thinner films. The variation of aggregation structure during thermal expansion procedure was analyzed by temperature-dependent WAXD. It is proved that thermal expansion behavior of thinner films could be largely attributed to molecular chain packing, whereas that may be influenced by many factors for thicker films in addition to the effect of chain packing. The results revealed that thermal expansion of films with thickness variation is closely related to molecular chain orientation and packing, which is associated with both chemistry and morphological structure of polyimide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhuang, Y.; Seong, J. G.; Lee, Y. M. Polyimides containing aliphatic/alicyclic segments in the main chains. Prog. Polym. Sci. 2019, 92, 35–88.

    Article  CAS  Google Scholar 

  2. Long, Y. B.; Chen, X. J.; Wu, H. Y.; Zhou, Z. X.; Babu, S. S.; Wu, M. M.; Zhao, J.; Aldred, M. P.; Liu, S. W.; Chen, X. D.; Chi, Z. G.; Xu, J. R.; Zhang, Y. Rigid polyimides with thermally activated delayed fluorescence for polymer light-emitting diodes with high external quantum efficiency up to 21%. Angew. Chem. Int. Ed. 2021, 60, 7220–7226.

    Article  CAS  Google Scholar 

  3. Zhang, G. D.; Fan, L.; Bai, L.; He, M. H.; Zhai, L.; Mo, S. Mesoscopic simulation assistant design of immiscible polyimide/BN blend films with enhanced thermal conductivity. Chinese J. Polym. Sci. 2018, 36, 1394–1402.

    Article  CAS  Google Scholar 

  4. Zheng, S. S.; Dong, H.; Wang, S. H.; Dong, J.; Guo, T.; Zhao, X.; Zhang, Q. H. Scalable reaction-spinning of rigid-rod Upilex-S (R) type polyimide fiber with an ultrahigh Tg. Chinese J. Polym. Sci. 2021, 39, 592–600.

    Article  CAS  Google Scholar 

  5. Numata, S.; Fujisaki, K.; Kinjo, N. Re-examination of the relationship between packing coefficient and thermal expansion coefficient for aromatic polyimides. Polymer 1987, 28, 2282–2288.

    Article  CAS  Google Scholar 

  6. Tan, Y. Y.; Zhang, Y.; Jiang, G. L.; Zhi, X. X.; Xiao, X.; Wu, L.; Jia, Y. J.; Liu, J. G.; Zhang, X. M. Preparation and properties of inherently black polyimide films with extremely low coefficients of thermal expansion and potential applications for black flexible copper clad laminates. Polymers 2020, 12, 576.

    Article  CAS  Google Scholar 

  7. Bai, L.; Zhai, L.; He, M. H.; Wang, C. O.; Mo, S.; Fan, L. Thermal expansion behavior of poly(amide-imide) films with ultrahigh tensile strength and ultralow CTE. Chinese J. Polym. Sci. 2020, 38, 748–758.

    Article  CAS  Google Scholar 

  8. Dolbow, J.; Gosz, M. Effect of out-of-plane properties of a polyimide film on the stress fields in microelectronic structures. Mech. Mater. 1996, 23, 311–321.

    Article  Google Scholar 

  9. Gao, X. Y.; Lin, L.; Liu, Y. C.; Huang, X. Q. LTPS TFT process on polyimide substrate for flexible AMOLED. J. Disp. Technol. 2015, 11, 666–669.

    Article  CAS  Google Scholar 

  10. Fukukawa, K. I.; Okazaki, M.; Sakata, Y.; Urakami, T.; Yamashita, W.; Tamai, S. Synthesis and properties of multi-block semi-alicyclic polyimides for thermally stable transparent and low CTE film. Polymer 2013, 54, 1053–1063.

    Article  CAS  Google Scholar 

  11. Ishii, J.; Yokoyama, N.; Hasegawa, M. Solution-processable CF3-substituted ductile polyimides with low coefficients of thermal expansion as novel coating-type protective layers in flexible printed circuit boards. Prog. Org. Coat. 2016, 99, 125–133.

    Article  CAS  Google Scholar 

  12. Wang, C. O.; Zhai, L.; Gao, M. Y.; Jia, Y.; Mo, S.; He, M. H.; Fan, L. Research progress in thermal expansion behavior of polyimide films. Sci. Sin. Chim. (in Chinese) 2022, 52, 437–451.

    Article  Google Scholar 

  13. Bai, L.; Zhai, L.; He, M. H.; Wang, C. O.; Mo, S.; Fan, L. Preparation of heat-resistant poly(amide-imide) films with ultralow coefficients of thermal expansion for optoelectronic application. React. Funct. Polym. 2019, 141, 155–164.

    Article  CAS  Google Scholar 

  14. Zhao, W.; Xu, Y.; Song, C. H. R.; Chen, J.; Liu, X. H. Polyimide/mica hybrid films with low coefficient of thermal expansion and low dielectric constant. e-Polymers 2019, 19, 181–189.

    Article  CAS  Google Scholar 

  15. Lian, M.; Zheng, F.; Lu, X.; Lu, Q. Tuning the heat resistance properties of polyimides by intermolecular interaction strengthening for flexible substrate application. Polymer 2019, 173, 205–214.

    Article  CAS  Google Scholar 

  16. Bai, L.; Zhai, L.; Wang, C. O.; He, M. H.; Mo, S.; Fan, L. Thermal expansion behavior of amide-containing polyimide films with ultralow thermal expansion coefficient. Chem. J. Chinese Univ. (in Chinese) 2020, 41, 795–802.

    CAS  Google Scholar 

  17. Lian, M.; Lu, X.; Lu, Q. Synthesis of superheat-resistant polyimides with high Tg and low coefficient of thermal expansion by introduction of strong intermolecular interaction. Macromolecules 2018, 51, 10127–10135.

    Article  CAS  Google Scholar 

  18. Yang, Z. H.; Guo, H. Q.; Kang, C. Q.; Gao, L. X. Synthesis and characterization of amide-bridged colorless polyimide films with low CTE and high optical performance for flexible OLED displays. Polym. Chem. 2021, 12, 5364–5376.

    Article  CAS  Google Scholar 

  19. Luo, L. B.; Ye, X. H.; Yi, J.; Li, K.; Liu, X. Y. Heat resistance and dimensional stability of polyimide improved by inhibiting the dissociation of hydrogen bonds at high temperatures through crosslinking. Acta Polymerica Sinica (in Chinese) 2021, 22, 363–370.

    Google Scholar 

  20. Yin, Q.; Hu, Y. Y.; Qin, Y. T.; Cheng, Z.; Luo, L. B.; Liu, X. Y. Construction of polyimide films with excellent dimensional stability and toughness via incorporating point-to-face multi-coordination structure. Compos. Part B-Eng. 2021, 208, 108566.

    Article  CAS  Google Scholar 

  21. Tong, H. M.; Hsuen, H. K. D.; Saenger, K. L.; Su, G. W. Thickness direction coefficient of thermal expansion measurement of thin polymer films. Rev. Sci. Instrum. 1991, 62, 422–430.

    Article  CAS  Google Scholar 

  22. Saraf, R. F.; Tong, H. M.; Poon, T. W.; Silverman, B. D.; Ho, P. S.; Rossi, A. R. Thickness direction thermal expansion measurements. J. Appl. Polym. Sci. 1992, 46, 1329–1337.

    Article  CAS  Google Scholar 

  23. Sekiguchi, K.; Takizawa, K.; Ando, S. Thermal expansion behavior of the ordered domain in polyimide films investigated by variable temperature WAXD measurements. J. Photopolym. Sci. Technol. 2013, 26, 327–332.

    Article  CAS  Google Scholar 

  24. Ishige, R. Precise structural analysis of polymer materials using synchrotron X-ray scattering and spectroscopic methods. Polym. J. 2020, 52, 1013–1026.

    Article  CAS  Google Scholar 

  25. Ando, S.; Sekiguchi, K.; Mizoroki, M.; Okada, T.; Ishige, R. Anisotropic linear and volumetric thermal-expansion behaviors of self-standing polyimide films analyzed by thermomechanical analysis (TMA) and optical interferometry. Macromol. Chem. Phys. 2018, 219, 1700354.

    Article  Google Scholar 

  26. Pottiger, M. T.; Coburn, J. C.; Edman, J. R. The effect of orientation on thermal expansion behavior in polyimide films. J. Polym. Sci., Part B: Polym. Phys. 1994, 32, 825–837.

    Article  CAS  Google Scholar 

  27. Liou, H. C.; Ho, P. S.; Stierman, R. Thickness dependence of the anisotropy in thermal expansion of PMDA-ODA and BPDA-PDA thin films. Thin Solid Films 1999, 339, 68–73.

    Article  CAS  Google Scholar 

  28. Song, G. L.; Wang, D. M.; Dang, G. D.; Zhou, H. W.; Chen, C. H.; Zhao, X. G. Thermal expansion behavior of polyimide films containing benzoxazole unit. High Perform. Polym. 2014, 26, 413–419.

    Article  Google Scholar 

  29. Hasegawa, M.; Tokunaga, R.; Hashimoto, K.; Ishii, J. Crosslinkable polyimides obtained from a reactive diamine and the effect of crosslinking on the thermal properties. React. Funct. Polym. 2019, 139, 181–188.

    Article  CAS  Google Scholar 

  30. Ree, M.; Chu, C. W.; Goldberg, M. J. Influence of chain rigidity, inplane orientation, and thickness residual stress of polymer films. J. Appl. Phys. 1994, 75, 1410–1419.

    Article  CAS  Google Scholar 

  31. Zhai, L.; Yang, S. Y.; Fan, L. Preparation and characterization of highly transparent and colorless semi-aromatic polyimide films derived from alicyclic dianhydride and aromatic diamines. Polymer 2012, 53, 3529–3539.

    Article  CAS  Google Scholar 

  32. Ando, S.; Harada, M.; Okada, T.; Ishige, R. Effective reduction of volumetric thermal expansion of aromatic polyimide films by incorporating interchain crosslinking. Polymers 2018, 10, 761.

    Article  Google Scholar 

  33. Liu, H.; Zhai, L.; Bai, L.; He, M. H.; Wang, C. G.; Mo, S.; Fan, L. Synthesis and characterization of optically transparent semi-aromatic polyimide films with low fluorine content. Polymer 2019, 163, 106–114.

    Article  CAS  Google Scholar 

  34. Ree, M.; Chen, K. J.; Kirby, D. P.; Katzenellenbogen, N.; Grischkowsky, D. Anisotropic properties of high temperature polyimide thin films: Dielectric and thermal expansion behaviors. J. Appl. Phys. 1992, 72, 2014–2021.

    Article  CAS  Google Scholar 

  35. Ishige, R.; Masuda, T.; Kozaki, Y.; Fujiwara, E.; Okada, T.; Ando, S. Precise analysis of thermal volume expansion of crystal lattice for fully aromatic crystalline polyimides by X-ray diffraction method: relationship between molecular structure and linear/volumetric thermal expansion. Macromolecules 2017, 50, 2112–2123.

    Article  CAS  Google Scholar 

  36. Okada, T.; Ishige, R.; Ando, S. Effects of chain packing and structural isomerism on the anisotropic linear and volumetric thermal expansion behaviors of polyimide films. Polymer 2018, 146, 386–395.

    Article  CAS  Google Scholar 

  37. Wang, Z. H.; Chen, X.; Yang, H. X.; Zhao, J.; Yang, S. Y. The in-plane orientation and thermal mechanical properties of the chemically imidized polyimide films. Chinese J. Polym. Sci. 2019, 37, 268–278.

    Article  CAS  Google Scholar 

  38. Hao, F. Y.; Wang, J. H.; Qi, S. L.; Tian, G. F.; Wu, D. Z. Structures and properties of polyimide with different pre-imidization degrees. Chinese J. Polym. Sci. 2020, 38, 840–846.

    Article  CAS  Google Scholar 

  39. Lin, D. L.; Liu, Y. Z.; Jia, Z. Q.; Qi, S. L.; Wu, D. Z. Structural evolution of macromolecular chain during pre-imidization process and its effects on polyimide film properties. J. Phys. Chem. B 2020, 124, 7969–7978.

    Article  CAS  Google Scholar 

  40. Bai, L.; Zhai, L.; He, M. H.; Wang, C. O.; Mo, S.; Fan, L. Effect of high temperature annealing on thermal expansion behavior of poly(amide-imide) films with ultralow coefficient of thermal expansion. Acta Polymerica Sinica (in Chinese) 2019, 50, 1305–1313.

    CAS  Google Scholar 

  41. Ishii, J.; Takata, A.; Oami, Y.; Yokota, R.; Vladimirov, L.; Hasegawa, M. Spontaneous molecular orientation of polyimides induced by thermal imidization (6). Mechanism of negative in-plane CTE generation in non-stretched polyimide films. Eur. Polym. J. 2010, 46, 681–693.

    Article  CAS  Google Scholar 

  42. Zhang, Z. M.; Lefever-Button, G.; Powell, F. R. Infrared refractive index and extinction coefficient of polyimide films. Int. J. Thermophys. 1998, 19, 905–916.

    Article  CAS  Google Scholar 

  43. Jou, J. H.; Huang, P. T.; Chen, H. C.; Liao, C. N. Coating thickness effect on the orientation and thermal expansion coefficient of polyimide films. Polymer 1992, 33, 967–974.

    Article  CAS  Google Scholar 

  44. Echigo, Y.; Iwaya, Y.; Tomioka, I.; Yamada, H. Solvent effects in thermal curing of poly(4,4′-oxybis(phenylene- pyromellitamic acid)). Macromolecules 1995, 28, 4861–4865.

    Article  CAS  Google Scholar 

  45. Chung, H.; Joe, Y. I.; Han, H. Effects of thickness on the residual stress behavior of high temperature polyimide films. Polym. J. 2000, 32, 215–221.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51803221).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Zhai or Lin Fan.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CO., Zhai, L., Mo, S. et al. Effect of Aggregation Structure on Thermal Expansion Behavior of Polyimide Films with Different Thickness. Chin J Polym Sci 40, 1651–1661 (2022). https://doi.org/10.1007/s10118-022-2785-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2785-2

Keywords

Navigation