Skip to main content
Log in

Regulation and control of discoloration efficiency of mechanochromic polyurethane elastomers by microstructure design

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Regulation of the discoloration efficiency of mechanochromism materials is a big challenge to date. In this study, a series of polyurethane elastomers (PUEs) using dihydroxyspiropyran (SP2) as functional molecule with varied microstructure were synthesized. The mechanochromic behavior of PUEs and the relationship between it and the microstructure of PUEs was investigated. As a result, when SP2 was covalently bonded to PUE backbones, discoloration phenomenon was clearly detected and appears earlier in PUEs with higher microphase separation degree under stretching. On the other hand, the PUEs with ultralow microphase separation degree could hardly change color until the fracture of the materials. Therefore, the characteristic indigo blue appearance efficiency could be easily controlled (from 300 to 600% strain) by adjusting the microphase separation degree in these PUEs. The results will allow these materials to deal with broader stress range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and the supplementary materials.

References

  1. Cao ZQ (2020) Macromol Chem Phys 221(15):2000190. https://doi.org/10.1002/macp.202000190

    Article  CAS  Google Scholar 

  2. Wang ZJ, Ma ZY (2015) Adv Mater 27(41):6469–6474. https://doi.org/10.1002/adma.201503424

    Article  CAS  PubMed  Google Scholar 

  3. Qiu WL, Gurr PA (2019) Polym Chem-Uk 10(13):1650–1659. https://doi.org/10.1039/C9PY00017H

    Article  CAS  Google Scholar 

  4. Wang TS, Zhang N (2017) Acs Appl Mater Inter 9(13):11874–11881. https://doi.org/10.1021/acsami.7b00176

    Article  CAS  Google Scholar 

  5. Kim TA, Beiermann BA (2016) Acs Macro Lett 5(12):1312–1316. https://doi.org/10.1021/acsmacrolett.6b00822

    Article  CAS  PubMed  Google Scholar 

  6. O’Bryan G, Wong BM (2010) Acs Appl Mater Inter 2(6):1594–1600. https://doi.org/10.1021/am100050v

    Article  CAS  Google Scholar 

  7. Kingsbury CM, May PA (2011) J Mater Chem 21(23):8381–8388. https://doi.org/10.1039/C0JM04015K

    Article  CAS  Google Scholar 

  8. Davis DA, Hamilton A (2009) Nature 459:68–72. https://doi.org/10.1038/nature07970

    Article  CAS  PubMed  Google Scholar 

  9. Hemmer JR, Smith PD (2014) J Polym Sci Pol Phys 52(20):1347–1356. https://doi.org/10.1002/polb.23569

    Article  CAS  Google Scholar 

  10. Zhang FF, Ji R (2020) J Appl Polym Sci 137(42):49272. https://doi.org/10.1002/app.49272

    Article  CAS  Google Scholar 

  11. Wang KP, Deng YP (2010) Polymer 210:123017. https://doi.org/10.1016/j.polymer.2020.123017

    Article  CAS  Google Scholar 

  12. Dong HN, Wang YM (2022) J Polym Res 29(10):413. https://doi.org/10.1007/s10965-022-03271-4

    Article  CAS  Google Scholar 

  13. Zhang H, Chen YJ (2014) Macromolecules 47(19):6783–6790. https://doi.org/10.1021/ma500760p

    Article  CAS  Google Scholar 

  14. Fang XL, Zhang H (2013) Macromolecules 46(16):6566–6574. https://doi.org/10.1021/ma4014862

    Article  CAS  Google Scholar 

  15. Lee CK, Beiermann BA (2013) Macromolecules 46(10):3746–3752. https://doi.org/10.1021/ma4005428

    Article  CAS  Google Scholar 

  16. Kojio K, Nozaki S (2020) J Polym Res 27(6):140. https://doi.org/10.1007/s10965-020-02090-9

    Article  CAS  Google Scholar 

  17. Akram N, Saleem S (2021) J Polym Res 28(7):238. https://doi.org/10.1007/s10965-021-02566-2

    Article  CAS  Google Scholar 

  18. Seshimo K, Sakai H (2021) Angew Chem Int Ed 60(15):8406–8409. https://doi.org/10.1002/anie.202015196

    Article  Google Scholar 

  19. Banan A, Mehdipour H (2021) J Polym Res 28(9):133. https://doi.org/10.1007/s10965-021-02671-2

    Article  CAS  Google Scholar 

  20. Lin CL, Lin WL (2023) J Polym Res 30(2):54. https://doi.org/10.1007/s10965-022-03408-5

    Article  CAS  Google Scholar 

  21. Baek SH, Kim JH (2021) Polym Test 103:107366. https://doi.org/10.1016/j.polymertesting.2021.107366

    Article  CAS  Google Scholar 

  22. Zhang HT, Zhang F (2020) Ind Eng Chem Res 59(10):4483–4492. https://doi.org/10.1021/acs.iecr.9b06107

    Article  CAS  Google Scholar 

  23. Pu MY, Zhou X (2023) Waste Manag 155:137–145. https://doi.org/10.1016/j.wasman.2022.10.032

    Article  CAS  PubMed  Google Scholar 

  24. Oprea S, Potolinca VO (2022) J Polym Res 29(9):369. https://doi.org/10.1007/s10965-022-03230-z

    Article  CAS  Google Scholar 

  25. Cui YY, Pan HW (2022) J Polym Res 29(6):218. https://doi.org/10.1007/s10965-022-03079-2

    Article  CAS  Google Scholar 

  26. Manuel B, Itzel G (2022) Chemosphere 307(P4):136136. https://doi.org/10.1016/j.chemosphere.2022.136136

    Article  CAS  Google Scholar 

  27. Karaköse A, Hazer O (2022) J Polym Res 29(12):504. https://doi.org/10.1007/s10965-022-03345-3

    Article  CAS  Google Scholar 

  28. Jung YS, Woo J (2022) J Polym Res 29(12):521. https://doi.org/10.1007/s10965-022-03375-x

    Article  CAS  Google Scholar 

  29. Oprea S, Potolinca VO (2020) J Polym Res 27(3):60. https://doi.org/10.1007/s10965-020-2036-6

    Article  CAS  Google Scholar 

  30. Yilgor I, Yilgor E (2007) Polym Rev 47(4):487–510. https://doi.org/10.1080/15583720701638260

    Article  CAS  Google Scholar 

  31. Ji FL, Hu JL (2011) J Macromol Sci Phys 50(12):2290–2306. https://doi.org/10.1080/00222348.2011.562091

    Article  CAS  Google Scholar 

  32. Chen KS, Yu TL (2001) J Polym Res 8(2):99–109. https://doi.org/10.1007/s10965-006-0139-3

    Article  CAS  Google Scholar 

  33. Wang XY, Xu J (2022) Adv Mater 34(45):e2205763. https://doi.org/10.1002/adma.202205763

    Article  CAS  PubMed  Google Scholar 

  34. Candau N, Stoclet G (2021) Polymer 223:123708. https://doi.org/10.1016/j.polymer.2021.123708

    Article  CAS  Google Scholar 

  35. Guo XW, Wang JX (2023) Chem Eng J 465:143074. https://doi.org/10.1016/j.cej.2023.143074

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (no.52103013 and no.52173208) and Funding of Jiangsu Educational Committee (19KJB430042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An Xie.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 780 KB)

Supplementary file1 (Tiff 5090 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Huang, X., Wang, Z. et al. Regulation and control of discoloration efficiency of mechanochromic polyurethane elastomers by microstructure design. J Polym Res 30, 214 (2023). https://doi.org/10.1007/s10965-023-03607-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03607-8

Keywords

Navigation