Skip to main content

Advertisement

Log in

Stoichiometric-architectural impact on thermo-mechanical and morphological behavior of segmented Polyurethane elastomers

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The pliability of polymers is contingent on its architecture, decided by its stoichiometry, which is also an expedient way to ensure the anticipated characteristics in polymers. Four series of linear polyurethane elastomers, each comprised of seven samples are synthesized using hydroxyl terminated polybutadiene as macrodiol, toluene diisocyanate and four different chain extenders: 1, 2 Ethane diol; 1, 4 Butane diol; 1, 6 Hexane diol and 1, 8 Octane diol. The functional linkages for the development of polymers have been confirmed via Fourier transform infrared spectroscopy. Hydrogen bonding index calculated from vibrational modes of C = O group are obtained in the range of 1.08–1.394. The thermal stability is observed up to 290 °C by thermal gravimetric analysis. Swelling behavior showed 50% of industrial waste water uptake. The true tensile strength is observed up to 8.48 MPa with 1,4 butane diol as chain extender. The secant modulus at 1% strain rate is found in the range of 0.30 to 12 MPA. The maximum value of toughness is observed as 3.26 J-mm−2 for 1,4 butane diol chain extender. Scanning electron microscopic analysis has revealed morphological phase segmentation based on composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Han X, Guo Z (2021) Graphene and its derivative composite materials with special wettability: Potential application in oil-water separation. Carbon 172:647–681

    Article  CAS  Google Scholar 

  2. Xiang D, Liu L, Liang Y (2017) Effect of hard segment content on structure, dielectric and mechanical properties of hydroxyl-terminated butadiene-acrylonitrile copolymer-based polyurethane elastomers. Polym 132:180–187

    Article  CAS  Google Scholar 

  3. Ponnamma D, Yin Y, Salim N (2021) Recent progress and multifunctional applications of 3D printed graphene nanocomposites. Compos B Eng 204:108493

    Article  CAS  Google Scholar 

  4. Akram N, Zia KM, Saeed M, Mansha A, Khan WG (2018) Morphological studies of polyurethane based pressure sensitive adhesives by tapping mode atomic force microscopy. J Poly Res 25:194

    Article  CAS  Google Scholar 

  5. Delpech MC, Miranda GS (2012) Waterborne polyurethanes: influence of chain extender in ftir spectra profiles Cent. Eur J Eng 2:231–238

    CAS  Google Scholar 

  6. Wang Y, Zhou W, Cao K, Hu X, Gao L, Lu Y (2021) Structural Impact of Graphene Nanoribbon on Mechanical Properties and Anti-corrosion Performance of Polyurethane Nanocomposites. Chem Eng J 405:126858

    Article  CAS  Google Scholar 

  7. Singh AK, Mehra DS, Niyogi UK, Sabharwal S, Khandal KR (2012) Shrinkage studies in electron beam curable polyuretane pressure-sensitive adhesive Radiat. Phys Chem 81:547–552

    CAS  Google Scholar 

  8. Akram N, Zia KM, Saeed M, Usman M, Khan WG (2019) Role of isophorone diisocyanate in the optimization of adhesion tendency of polyurethane pressure sensitive adhesives. J Appl Polym Sci 136:47124

    Article  CAS  Google Scholar 

  9. Moon JI, LeeYH KHJ, Schwartz S, Rafailovich M, Sokolov, (2012) Investigation of the peel test for measuring self-cleanable characteristic of fluorine-modified coatings. J Polym Testing 31:433–438

    Article  CAS  Google Scholar 

  10. Joo H, Cho S (2020) Comparative studies on polyurethane composites filled with polyaniline and graphene for DLP-type 3D printing. Polym 121:67

    Article  CAS  Google Scholar 

  11. NaeemM KHC, Michelmore A, Ma J (2020) A new method for preparation of functionalized graphene and its epoxy nanocomposites. Compos B Eng 1961:108096

    Article  CAS  Google Scholar 

  12. Akram N, Zia KM, Sattar R, Tabassum S, Saeed M (2019) Thermomechanical investigation of hydroxyl-terminated polybutadiene-based linear polyurethane elastomers. J Appl Polym Sci 136:47289

    Article  CAS  Google Scholar 

  13. Mahmood K, Zia KM, Aftab W, Zuber M, Tabasum S, Noreen A, Zia F (2018) Synthesis and characterization of chitin/curcumin blended polyurethane elastomers Intl. J Biol Macromol 113:150–158

    Article  CAS  Google Scholar 

  14. Agirre A, Nase J, Degrandi E, Creton C, Asua JM (2010) Improving adhesion of acrylic waterborne PSAs to low surface energy materials: Introduction of stearyl acrylate. J Polym Sci Part A: Polym Chem 48:5030–5039

    Article  CAS  Google Scholar 

  15. Chiang WK, Ghassemieh E, Lewis R, Rowson J, Thompson C (2010) Comparison of tack of pressure-sensitive adhesives (PSAs) at different temperatures. J Adhesion Sci Tech 24:1949–1957

    Article  CAS  Google Scholar 

  16. Akram N, Zia KM, Saeed M, Usman M, Saleem S (2018) Impact of macrodiols on the adhesion strength of polyurethane pressure-sensitive adhesives. J Appl Polym Sci 135:46635

    Article  CAS  Google Scholar 

  17. Hung P, Lau K, Fox B, Hameed N, Lee J, Hui D (2019) Surface modification of carbon fibre using graphene–related materials for multifunctional composites Compos. B Eng 133:240–257

    Google Scholar 

  18. Akram N, Zia KM, Saeed M, Usman M, Khan WG, Bashir MA (2019) Investigation of non-adhesive behaviour of waterborne polyurethane dispersions. Poly Res 26:45

    Article  CAS  Google Scholar 

  19. Akram N, Gurney RS, Keddie JL, Zuber M, Ishaq M (2013) Influence of Polyol molecular and type on the tack and peel properties of waterborne polyurethane pressure-sensitive adhesives. Macromol React Eng 7:493

    Article  CAS  Google Scholar 

  20. Beatriz L, José LDLF (2014) Rheokinetic analysis on the formation of metallo-polyurethanes based on hydroxyl-terminated polybutadieneEuro. Polym J 50:117–126

    Google Scholar 

  21. Tarek M, Madkour RAA (2013) Non-Gaussian behavior of self-assembled thermoplastic polyurethane elastomers synthesized using two-step polymerization and investigated using constant-strain stress relaxation and molecular modeling techniques. Euro Polym J 49:439–451

    Article  CAS  Google Scholar 

  22. Daoudi A, Perraton D, Dony A, Carter A (2020) From Complex Modulus E* to Creep Compliance D(t): Experimental and Modeling Study Mater.13:1945. https://doi.org/10.3390/ma13081945

  23. Špírková M, Pavličević J, Strachota A, Poreba R, Bera O, Kaprálková L, Baldrian J, Šlouf M, Lazić L, Simendić JB (2011) Novel polycarbonate-based polyurethane elastomers: Composition–property relationship Euro. Polym J 47:959–972

    Google Scholar 

  24. HaoYM ZL, Lih ST, Yugang S, Shaoqin G (2014) Silver nanowire/thermoplastic polyurethane elastomer nanocomposites: Thermal, mechanical, and dielectric properties Mat. Desig 56:398–404

    Google Scholar 

  25. Peng W, Dietmar A, Eckart U, Georg G, Manfred HW (2019) Rheological and Mechanical Gradient Properties of Polyurethane Elastomers for 3D-Printing with Reactive Additives. Appl Rheol 29:162–172

    Article  CAS  Google Scholar 

  26. Wang P, Auhl D, Uhlmann E, Gerlitzky G, Wagner MH (2019) Rheological and Mechanical Gradient Properties of Polyurethane Elastomers for 3D-Printing with Reactive Additives. Appl Rheol 29(1):162–172

    Article  CAS  Google Scholar 

  27. Fan J, Chen A (2019) Studying a Flexible Polyurethane Elastomer with Improved Impact-Resistant Performance. Polym 11(3):467

    Article  CAS  Google Scholar 

  28. Jeevan J, Abhishek KA (2020) EMI shielding and dynamic mechanical analysis of graphene oxide-carbon nanotube-acrylonitrile butadiene styrene hybrid composites. Polym Test 91:106839

    Article  CAS  Google Scholar 

  29. Oprea S, Timpu D, Oprea V (2019) Design-properties relationships of polyurethanes elastomers depending on different chain extenders structures. J Polym Res 26:117

    Article  CAS  Google Scholar 

  30. Kojio K, Mutsuhisa F, Yoshiteru N, Sadaharu N (2010) Control of Mechanical Properties of Thermoplastic Polyurethane Elastomers by Restriction of Crystallization of Soft Segment. Materials 3:5097–5110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zia KM, Barikani M, Zuber M, Bhatti IA, Bhatti HN (2008) Morphological Studies of Polyurethane Elastomers Extended with α, ω Alkane Diols. Iran Polym J 17(1):61–72

    CAS  Google Scholar 

  32. Mashhadi MM, Lopes CS, Lorca LJ (2018) Modelling of the mechanical behavior of polyurethane foams by means of micromechanical characterization and computational homogenization. Int J Solids Struct 146:154–166

    Article  CAS  Google Scholar 

  33. McKeen P (2019) Liao Z (2019) Pyrolysis model for predicting the fire behavior of flexible polyurethane foam. Build simul 12:337–345

    Article  Google Scholar 

  34. Jouibari IS, Asl VH, Mirhosseini MM (2019) A novel investigation on micro-phase separation of thermoplastic polyurethanes: simulation, theoretical, and experimental approaches. Iran Polym J 28:237–250

    Article  CAS  Google Scholar 

  35. Menon A, James A, Colón T, Washburn NR (2019) Hierarchical machine learning model for mechanical property predictions of polyurethane elastomers from small datasets front. Mater Sci 6(87):1–12

    Google Scholar 

  36. Chen CP, Dai SA, Chang HL, Su WC, Wu TM, Jeng RJ (2005) Polyurethane elastomers through multi-hydrogen-bonded association of dendritic structures. Polym 46:11849–11857

    Article  CAS  Google Scholar 

  37. Lee DW, Kim HN, Lee DS (2019) Introduction of reversible urethane bonds based on vanillyl alcohol for efficient self-healing of polyurethane elastomers. Molecules 24:2201

    Article  PubMed Central  CAS  Google Scholar 

  38. Cao H, Qi F, Liu R, Wang F, Zhang C, Zhang X, Chai Y, Zhai L (2017) The influence of hydrogen bonding on Nmethyldiethanolamine- extended polyurethane solid–solid phase change materials for energy storage. RSC Adv 7:11244

    Article  CAS  Google Scholar 

  39. Ourique PA, Ornaghi FG, Ornaghi HL Jr, Wanke CH, Bianchi O (2019) Thermo-oxidative degradation kinetics of renewable hybrid polyurethane–urea obtained from air-oxidized soybean oil. J Therm Anal Calorim 137:1969–1979

    Article  CAS  Google Scholar 

  40. Gadgeel AA, Mhaske ST (2020) Synthesis and characterization of UV curable polyurethane acrylate derived from ɑ-Ketoglutaric acid and isosorbide. Prog Org Coat 150:105983

    Article  CAS  Google Scholar 

  41. Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34(10):1068–1133

    Article  CAS  Google Scholar 

  42. Silva JEE, Alarcon RT, Gaglieri C, Magdalena AG, Silva-Filho LC, Bannach G (2018) New thermal study of polymerization and degradation kinetics of methylene diphenyl diisocyanate. J Therm Anal Calorim 133:1455–1462

    Article  CAS  Google Scholar 

  43. Naheed S, Zuber M, Barikani M, Salman M (2021) Molecular engineering and morphology of polyurethane elastomers containing various molecular weight of macrodiols. Molecular engineering and morphology of polyurethane elastomers containing various molecular weight of macrodiols, Materials science and Engineering : B 264:114960

    CAS  Google Scholar 

  44. Akram N, Saeed M, Usman M, Mansha A, Anjum F, Zia KM, Mahmood I, Mumtaz N, Khan WG (2021) Influence of graphene oxide contents on mechanical behavior of polyurethane composites fabricated with different diisocyanates. Polymers 30; 13(3):444

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Akram.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (tif 2910 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, N., Saleem, S., Zia, K.M. et al. Stoichiometric-architectural impact on thermo-mechanical and morphological behavior of segmented Polyurethane elastomers. J Polym Res 28, 238 (2021). https://doi.org/10.1007/s10965-021-02566-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02566-2

Keywords

Navigation