Skip to main content
Log in

Fire behavior of flame-retardant polyurethane semi-rigid foam in presence of nickel (II) oxide and graphene nanoplatelets additives

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Flame-retardant features are one of the most sought characters among polymer- properties as they are used in broad ranges of applications. However, understanding and optimizing the scientific technology of their design, remains the principal challenge to improve their effectiveness. Thus, herein we would put in relief the contribution of graphene nanoplatelets as flame retardant (FR) of semi-rigid nanocomposite polyurethane foams (RPUFS), combined with nickel oxide nanoparticles as toxic gas reducer. The RPUFs nanocomposites were prepared using a facile one-step method followed by their characterization using: Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffractometer (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and mechanical tensile test. The efficiency evaluation of particles addition on flammability of rigid nanocomposite foams was carried according to Limiting Oxygen Index (LOI) and vertical burning test (UL 94 V). The obtained results show that the addition of both of NiO and/or GnPs have improved the tensile behavior of foams and kept a stable bulk density, they have also shown an outstanding effect by limiting the flame propagation during the combustion process, through a creation of compact and homogenous char layer. Moreover, the TGA-FTIR analysis has put forward the pinpointed role of NiO on the highest reduction of CO gas release. The most promising results were obtained for the samples designated as RPUF6, containing 2 wt% of NiO and 1.5 wt% GnPs, for which the highest reduction of gas release was observed and better thermal and mechanical properties compared to the neat RPUF, confirming the paramount role of these additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Xu D, Yu K, Qian K (2018) Thermal degradation study of rigid polyurethane foams containing tris (1-chloro-2-propyl) phosphate and modified aramid fiber. Polym Testing 67:159–168

    Article  CAS  Google Scholar 

  2. Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34(10):1068–1133

    Article  CAS  Google Scholar 

  3. Cao F, Jana SC (2007) Nanoclay-tethered shape memory polyurethane nanocomposites. Polymer 48(13):3790–3800

    Article  CAS  Google Scholar 

  4. Wang Y, Wang F, Dong Q, Xie M, Liu P, Ding Y, Zhang S, Yang M, Zheng G (2017) Core-shell expandable graphite@ aluminum hydroxide as a flame-retardant for rigid polyurethane foams. Polym Degrad Stab 146:267–276

    Article  CAS  Google Scholar 

  5. Rastegarfar N, Behrooz R, Barikani M (2018) Characterization of polyurethane foams prepared from liquefied sawdust by crude glycerol and polyethylene glycol. J Polym Res 25(7):154

    Article  Google Scholar 

  6. Antunes M, Gedler G, Abbasi H, Velasco JI (2016) Graphene nanoplatelets as a multifunctional filler for polymer foams. Mater Today Proc 3:S233–S239

    Article  Google Scholar 

  7. Yarahmadi N, Vega A, Jakubowicz I (2017) Accelerated ageing and degradation characteristics of rigid polyurethane foam. Polym Degrad Stab 138:192–200

    Article  CAS  Google Scholar 

  8. Członka S, Bertino MF, Kośny J, Strąkowska A, Masłowski M, Strzelec K (2018) Linseed oil as a natural modifier of rigid polyurethane foams. Ind Crops Prod 115:40–51

    Article  Google Scholar 

  9. Gao L, Zheng G, Zhou Y, Hu L, Feng G, Zhang M (2014) Synergistic effect of expandable graphite, diethyl ethylphosphonate and organically-modified layered double hydroxide on flame retardancy and fire behavior of polyisocyanurate-polyurethane foam nanocomposite. Polym Degrad Stab 101:92–101

    Article  CAS  Google Scholar 

  10. Ferkl P, Kršková I, Kosek J (2018) Evolution of mass distribution in walls of rigid polyurethane foams. Chem Eng Sci 176:50–58

    Article  CAS  Google Scholar 

  11. Hayashi S, Fujimura H (1991) Shape memory polymer foam. Google Patents

  12. Li J, Mo X, Li Y, Zou H, Liang M, Chen Y (2017) Effect of zeolites on morphology and properties of water-blown semi-rigid ammonium polyphosphate intumescent flame-retarding polyurethane foam. J Polym Res 24(10):154

    Article  Google Scholar 

  13. Mahmoud Y, Safidine Z, Zeghioud H (2018) Elaboration of nanostructured polyurethane foams/OMMT using a twin-screw extruder in counter-rotating mode. J Serb Chem Soc 83(12):1363–1378

    Article  CAS  Google Scholar 

  14. Yang R, Wang B, Han X, Ma B, Li J (2017) Synthesis and characterization of flame retardant rigid polyurethane foam based on a reactive flame retardant containing phosphazene and cyclophosphonate. Polym Degrad Stab 144:62–69

    Article  CAS  Google Scholar 

  15. Jiao L, Xiao H, Wang Q, Sun J (2013) Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polym Degrad Stab 98(12):2687–2696

    Article  CAS  Google Scholar 

  16. Kind DJ, Hull TR (2012a) A review of candidate fire retardants for polyisoprene. Polym Degrad Stab 97(3):201–213

    Article  CAS  Google Scholar 

  17. Seretis G, Manolakos D, Provatidis C (2018) On the graphene nanoplatelets reinforcement of extruded high density polyethylene. Compos B Eng 145:81–89

    Article  CAS  Google Scholar 

  18. Gavgani JN, Adelnia H, Gudarzi MM (2014) Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J Mater Sci 49(1):243–254

    Article  CAS  Google Scholar 

  19. Thirumal M, Khastgir D, Nando G, Naik Y, Singha NK (2010) Halogen-free flame retardant PUF: effect of melamine compounds on mechanical, thermal and flame retardant properties. Polym Degrad Stab 95(6):1138–1145

    Article  CAS  Google Scholar 

  20. García PG, Ramírez-Aguilar R, Torres M, Franco-Urquiza EA, May-Crespo J, Camacho N (2018) Mechanical and thermal behavior dependence on graphite and oxidized graphite content in polyester composites. Polymer 153:9–16

    Article  Google Scholar 

  21. Yuan Y, Yu B, Shi Y, Ma C, Song L, Hu W, Hu Y (2018) Highly efficient catalysts for reducing toxic gases generation change with temperature of rigid polyurethane foam nanocomposites: A comparative investigation. Compos A Appl Sci Manuf 112:142–154

    Article  CAS  Google Scholar 

  22. Lorenzetti A, Modesti M, Gallo E, Schartel B, Besco S, Roso M (2012) Synthesis of phosphinated polyurethane foams with improved fire behaviour. Polym Degrad Stab 97(11):2364–2369

    Article  CAS  Google Scholar 

  23. Zheng X, Wang G, Xu W (2014) Roles of organically-modified montmorillonite and phosphorous flame retardant during the combustion of rigid polyurethane foam. Polym Degrad Stab 101:32–39

    Article  CAS  Google Scholar 

  24. Shi Y, Yu B, Zhou K, Yuen RK, Gui Z, Hu Y, Jiang S (2015) Novel CuCo2O4/graphitic carbon nitride nanohybrids: Highly effective catalysts for reducing CO generation and fire hazards of thermoplastic polyurethane nanocomposites. J Hazard Mater 293:87–96

    Article  CAS  PubMed  Google Scholar 

  25. Pierre T, Jiménez-Saelices C, Seantier B, Grohens Y (2017) Transient pulsed technique to characterize the radiative and conductive properties of bio aerogels. Int J Therm Sci 116:63–72

    Article  CAS  Google Scholar 

  26. Jiménez-Saelices C, Seantier B, Cathala B, Grohens Y (2017) Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohyd Polym 157:105–113

    Article  Google Scholar 

  27. Yazdi M, Asl VH, Pourmohammadi M, Roghani-Mamaqani H (2019) Mechanical properties, crystallinity, and self-nucleation of carbon nanotube-polyurethane nanocomposites. Polym Testing 79:106011

    Article  Google Scholar 

  28. Maamoun AA, Mahmoud A, Nasr E, Soliman E, Sarwar MI, Zulfiqar S (2019) Fabrication of novel formulations from rigid polyurethane foams and mortar for potential applications in building industry. J Polym Res 26(11):259

    Article  CAS  Google Scholar 

  29. Trovati G, Suman MVN, Sanches EA, Campelo PH, Neto RB, Neto SC, Trovati LR (2019) Production and characterization of polyurethane castor oil (Ricinus communis) foam for nautical fender. Polym Testing 73:87–93

    Article  CAS  Google Scholar 

  30. Luo X, Xiao Y, Wu Q, Zeng J (2018) Development of high-performance biodegradable rigid polyurethane foams using all bioresource-based polyols: Lignin and soy oil-derived polyols. Int J Biol Macromol 115:786–791

    Article  CAS  PubMed  Google Scholar 

  31. Chen Y, Liu Y, Yue C, Teng C, Chen S (2020) Enhanced effect of OMMT and KH-Al 2 O 3 on polyurethane composite mechanical properties. J Polym Res 27(9):1–8

    Article  CAS  Google Scholar 

  32. Modesti M, Lorenzetti A, Simioni F, Camino G (2002) Expandable graphite as an intumescent flame retardant in polyisocyanurate–polyurethane foams. Polym Degrad Stab 77(2):195–202

    Article  CAS  Google Scholar 

  33. Hui B, Ye L, Zhao X (2018) In situ preparation of polyurethane-imide/graphene oxide nano-composite foam: intercalation structure and thermal mechanical stability. J Polym Res 25(12):267

    Article  Google Scholar 

  34. Tang X, Zhang Z, Zhang X, Huo W, Liu J, Yan S, Yang J (2018) Design and formulation of polyurethane foam used for porous alumina ceramics. J Polym Res 25(6):136

    Article  Google Scholar 

  35. Oh J-H, Bae J-H, Kim J-H, Lee C-S, Lee J-M (2019) Effects of Kevlar pulp on the enhancement of cryogenic mechanical properties of polyurethane foam. Polym Testing 80:106093

    Article  CAS  Google Scholar 

  36. Ugarte L, Gómez-Fernández S, Tercjak A, Martínez-Amesti A, Corcuera MA, Eceiza A (2017) Strain sensitive conductive polyurethane foam/graphene nanocomposites prepared by impregnation method. Eur Polymer J 90:323–333

    Article  CAS  Google Scholar 

  37. Choe H, Choi Y, Kim JH (2019) Threshold cell diameter for high thermal insulation of water-blown rigid polyurethane foams. J Ind Eng Chem 73:344–350

    Article  CAS  Google Scholar 

  38. Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127

    Article  CAS  Google Scholar 

  39. Suen M-C, Gu J-H, Hwang J-J, Wu C-L, Lee H-T (2018) In-situ polymerization and characteristic properties of the waterborne poly (siloxanes-urethane) s nanocomposites containing graphene. J Polym Res 25(1):33

    Article  Google Scholar 

  40. Li Y, Yang Z, Zhang J, Ding L, Pan L, Huang C, Zheng X, Zeng C, Lin C (2019) Novel polyurethane with high self-healing efficiency for functional energetic composites. Polym Testing 76:82–89

    Article  CAS  Google Scholar 

  41. Cao Z-J, Dong X, Fu T, Deng S-B, Liao W, Wang Y-Z (2017) Coated vs. naked red phosphorus: A comparative study on their fire retardancy and smoke suppression for rigid polyurethane foams. Polym Degrad Stab 136:103–111

    Article  CAS  Google Scholar 

  42. Chen C, Zhao X, Shi C, Chen J (2018) Synergistic effect between carbon nanoparticle and intumescent flame retardant on flammability and smoke suppression of copolymer thermoplastic polyurethane. J Mater Sci 53(8):6053–6064

    Article  CAS  Google Scholar 

  43. Kind DJ, Hull TR (2012b) A review of candidate fire retardants for polyisoprene. Polym Degrad Stab 97(3):201–213

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Halima Saadiya Ababsa, is very indebted to Ecole Militaire Polytechnique for providing her the financial support through the Phd scholarichip N° 1/17/DRFPG/CMDT, she is also very thankful for the assistance and support met form DGRSDT/MESRS, through the ATRST projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mekki.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ababsa, H.S., Safidine, Z., Mekki, A. et al. Fire behavior of flame-retardant polyurethane semi-rigid foam in presence of nickel (II) oxide and graphene nanoplatelets additives. J Polym Res 28, 87 (2021). https://doi.org/10.1007/s10965-021-02450-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02450-z

Keywords

Navigation