Skip to main content
Log in

Microstructural Analysis and Effect of Spin-Canting on Magnetic Attributes of Single-Phase Polycrystalline Cobalt Ferrite Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Cobalt ferrite (CF) nanoparticles (CFNPs), prepared using citrate precursor method, were characterized using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Vibrating-sample Magnetometer (VSM) techniques to obtain their microstructural, morphological, and magnetic properties. The analysis of the obtained XRD data confirmed the spinel structure and phase purity of CFNPs with a crystallite size of ~ 26 nm. The SEM micrograph revealed the formation of nonuniform-sized grains, confirming the polycrystalline nature of the synthesized CFNPs. The VSM data revealed that the CFNPs exhibited moderate specific saturation magnetization (~ 59 emu/g), moderate specific remanent magnetization (~ 24 emu/g), and slightly higher coercivity (~ 601 Oe). A significant decrease in the specific saturation magnetization of the CFNPs was observed compared to bulk CF counterparts. This study correlates the observed decrease in the specific saturation magnetization to the presence of a degree of inversion (x) arising from less-than-ideal cation distribution for the inverse spinel CF system. This study also reports the existence of a nontrivial deviation of the magnetic order from the ideal, collinear, antiparallel spin structure of the prepared CFNP system. The presence of the Yafet-Kittel type of magnetic order, resulting from the nanoscale crystallite size, cation distribution, intra-sublattice exchange interactions, and spin reorientation, is established. The corresponding values of the Yafet-Kittel angles of the spin-canted magnetic order of the CFNP system have been empirically determined and reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kharisov, B.I., Dias, H.V.R., Kharissova, O.V.: Mini-review: ferrite nanoparticles in the catalysis. Arab. J. Chem. 12, 1234–1246 (2019). https://doi.org/10.1016/j.arabjc.2014.10.049

    Article  Google Scholar 

  2. Bharti, M.K., Gupta, S., Chalia, S., Garg, I., Thakur, P., Thakur, A.: Potential of magnetic nanoferrites in removal of heavy metals from contaminated water: mini review. J. Supercond. Nov. Magn. (2020). https://doi.org/10.1007/s10948-020-05657-1

    Article  Google Scholar 

  3. Tatarchuk, T., Bououdina, M., Macyk, W., Shyichuk, O., Paliychuk, N., Yaremiy, I., Al-Najar, B., Pacia, M.: Structural, optical, and magnetic properties of Zn-doped CoFe2O4 nanoparticles. Nanoscale Res. Lett. 12, (2017). https://doi.org/10.1186/s11671-017-1899-x

  4. Malinowska, I., Ryżyńska, Z., Mrotek, E., Klimczuk, T., Zielińska-Jurek, A.: Synthesis of CoFe2O4 nanoparticles: the effect of ionic strength, concentration, and precursor type on morphology and magnetic properties. J. Nanomater.  (2020). https://doi.org/10.1155/2020/9046219

  5. Nam, P.H., Lu, L.T., Linh, P.H., Manh, D.H., Thanh Tam, L.T., Phuc, N.X., Phong, P.T., Lee, I.J.: Polymer-coated cobalt ferrite nanoparticles: synthesis, characterization, and toxicity for hyperthermia applications. New J. Chem. 42, 14530–14541 (2018). https://doi.org/10.1039/c8nj01701h

    Article  Google Scholar 

  6. Tomar, D., Jeevanandam, P.: Synthesis of cobalt ferrite nanoparticles with different morphologies via thermal decomposition approach and studies on their magnetic properties. J. Alloys Compd. 155815 (2020). https://doi.org/10.1016/j.jallcom.2020.155815

  7. Hossain, A., Sarker, M.S.I., Khan, M.K.R., Khan, F.A., Kamruzzaman, M., Rahman, M.M.: Structural, magnetic, and electrical properties of sol–gel derived cobalt ferrite nanoparticles. Appl. Phys. A Mater. Sci. Process. 124, 0 (2018).https://doi.org/10.1007/s00339-018-2042-2

  8. Bharti, M.K., Chalia, S., Thakur, P., Hermosa, G.C., Aidan Sun, A.-C., Thakur, A.: Low-loss characteristics and sustained magneto-dielectric behaviour of cobalt ferrite nanoparticles over 1–6 GHz frequency range. Ceram. Int. 1–8 (2021). https://doi.org/10.1016/j.ceramint.2021.04.239

  9. Stein, C.R., Bezerra, M.T.S., Holanda, G.H.A., André-Filho, J., Morais, P.C.: Structural and magnetic properties of cobalt ferrite nanoparticles synthesized by co-precipitation at increasing temperatures. AIP Adv. 8, (2018). https://doi.org/10.1063/1.5006321

  10. Ramachandran, S.: A review on ferrite devices. IETE J. Res. 9, 600–623 (1963). https://doi.org/10.1080/03772063.1963.11486506

    Article  Google Scholar 

  11. Bharti, M.K., Gupta, S., Chalia, S., Garg, I., Thakur, P., Thakur, A.: Potential of magnetic nanoferrites in removal of heavy metals from contaminated water: mini review. J. Supercond. Nov. Magn. 33, 3651–3665 (2020). https://doi.org/10.1007/s10948-020-05657-1

    Article  Google Scholar 

  12. Sanchez-Marcos, J., Mazario, E., Rodriguez-Velamazan, J.A., Salas, E., Herrasti, P., Menendez, N.: Cation distribution of cobalt ferrite electrosynthesized nanoparticles. A methodological comparison. J. Alloys Compd. 739, 909–917 (2018). https://doi.org/10.1016/j.jallcom.2017.12.342

    Article  Google Scholar 

  13. Singh, J.P., Park, J.Y., Singh, V., Kim, S.H., Lim, W.C., Kumar, H., Kim, Y.H., Lee, S., Chae, K.H.: Correlating the size and cation inversion factor in context of magnetic and optical behavior of CoFe2O4 nanoparticles. RSC Adv. 10, 21259–21269 (2020). https://doi.org/10.1039/d0ra01653e

    Article  ADS  Google Scholar 

  14. Singh, A., Pathak, S., Kumar, P., Sharma, P., Rathi, A., Basheed, G.A., Maurya, K.K., Pant, R.P.: Tuning the magnetocrystalline anisotropy and spin dynamics in CoxZn1−xFe2O4 (0 ≤ x ≤ 1) nanoferrites. J. Magn. Magn. Mater. 493, 165737 (2020). https://doi.org/10.1016/j.jmmm.2019.165737

    Article  Google Scholar 

  15. Bhalla, N.,Taneja, S., Thakur, P., Sharma, PK., Mariotti, D., Maddi, C., Ivanova, O., Petrov, D., Edelman, I., Thakur, A.: Doping independent work function and stable band gap of spinel ferrites with tunable plasmonic and magnetic properties. Nanoletters. https://doi.org/10.1021/acs.nanolett.1c03767

  16. Chandel, S., Thakur, P., Tomar, M., Gupta, V., Thakur, A.: Investigation of structural, optical, dielectric and magnetic studies of Mn substituted BiFeO3 multiferroics. Ceram. Int. 43, 13750–13758 (2017). https://doi.org/10.1016/j.ceramint.2017.07.088

    Article  Google Scholar 

  17. Bharti, M.K., Chalia, S., Thakur, P., Thakur, A.: Effect of lanthanum doping on microstructural, dielectric and magnetic properties of Mn0.4Zn0.6Cd0.2LaxFe1.8−xO4 (0.0 ≤ x ≤ 0.4), (2021)

  18. Bajorek, A., Berger, C., Dulski, M., Łopadczak, P., Zubko, M., Prusik, K., Wojtyniak, M., Chrobak, A., Grasset, F., Randrianantoandro, N., Bajorek, A., Berger, C., Dulski, M., Łopadczak, P., Zubko, M.: Microstructural and magnetic characterization of Ni0.5Zn0.5Fe2O4 ferrite nanoparticles. J. Phys. Chem. Solids. 129, 1–21 (2020). https://doi.org/10.1016/j.jpcs.2018.12.045

  19. Yadav, R.S., Havlica, J., Masilko, J., Kalina, L., Hajdúchová, M., Enev, V., Wasserbauer, J., Kuřitka, I., Kozakova, Z.: Structural, cation distribution, and magnetic properties of CoFe2O4 spinel ferrite nanoparticles synthesized using a starch-assisted sol–gel auto-combustion method. J. Supercond. Nov. Magn. 28, 1851–1861 (2015). https://doi.org/10.1007/s10948-015-2990-0

    Article  Google Scholar 

  20. Heiba, Z.K., Mohamed, M.B., Ahmed, S.I.: Cation distribution correlated with magnetic properties of cobalt ferrite nanoparticles defective by vanadium doping. J. Magn. Magn. Mater. 441, 409–416 (2017). https://doi.org/10.1016/j.jmmm.2017.06.021

    Article  ADS  Google Scholar 

  21. Goodarz, Naseri, M., Saion, E.B., Abbastabar Ahangar, H., Shaari, A.H., Hashim, M.: Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method. J. Nanomater. (2010). https://doi.org/10.1155/2010/907686

  22. Elius, I.B., Hossain, S., Aktar, M.S., Zakaria, A.K.M., Kamal, I., Hoque, S.M., Azad, A.K.: Structural and magnetic characterizations of NixCu0.8−xZn0.2Fe2O4 spinel ferrites. Ferroelectrics. 572, 36–50 (2021). https://doi.org/10.1080/00150193.2020.1868871

  23. Jabez, S., Mahalakshmi, S., Nithiyanantham, S.: Frequency and temperature effects on dielectric properties of cobalt ferrite. J. Mater. Sci. Mater. Electron. 28, 5504–5511 (2017). https://doi.org/10.1007/s10854-016-6212-8

    Article  Google Scholar 

  24. Abouzir, E., Elansary, M., Belaiche, M., Jaziri, H.: Magnetic and structural properties of single-phase Gd3+-substituted Co-Mg ferrite nanoparticles. RSC Adv. 10, 11244–11256 (2020). https://doi.org/10.1039/d0ra01841d

    Article  ADS  Google Scholar 

  25. Thakur, S.S., Pathania, A., Thakur, P., Thakur, A., Hsu, J.H.: Improved structural, electrical and magnetic properties of Mn-Zn-Cd nanoferrites. Ceram. Int. 41, 5072–5078 (2015). https://doi.org/10.1016/j.ceramint.2014.12.077

    Article  Google Scholar 

  26. Kolhatkar, A.G., Jamison, A.C., Litvinov, D., Willson, R.C., Lee, T.R.: Tuning the magnetic properties of nanoparticles. (2013)

  27. Sathisha, I.C., Manjunatha, K., Bajorek, A., Rajesh Babu, B., Chethan, B., Ranjeth Kumar Reddy, T., Ravikiran, Y.T., Jagadeesha Angadi, V.: Enhanced humidity sensing and magnetic properties of bismuth doped copper ferrites for humidity sensor applications. J. Alloys Compd. 848, 156577 (2020). https://doi.org/10.1016/j.jallcom.2020.156577

  28. Chandel, S., Thakur, P., Thakur, S.S., Kanwar, V., Tomar, M., Gupta, V., Thakur, A.: Effect of non-magnetic Al3+ doping on structural, optical, electrical, dielectric and magnetic properties of BiFeO3 ceramics. Ceram. Int. 44, 4711–4718 (2018). https://doi.org/10.1016/j.ceramint.2017.12.053

    Article  Google Scholar 

  29. Kim, K.J., Kim, H.K., Park, Y.R., Park, J.Y.: Variation of the structural and the magnetic properties in Mn-doped CoFe2O4 thin films. J. Korean Phys. Soc. 49, 1024–1028 (2006)

    Google Scholar 

  30. Velásquez, A.A., Urquijo, J.P.: Influence of Co2+ on the structural and magnetic properties of substituted magnetites obtained by the coprecipitation method. Hyperfine Interact. 232, 97–110 (2015). https://doi.org/10.1007/s10751-015-1122-3

    Article  ADS  Google Scholar 

  31. Murthy, N.S.S., Natera, M.G., Youssef, S.I., Begum, R.J., Srivastava, C.M.: Yafet-Kittel angles in zinc-nickel ferrites. Phys. Rev. 181, 969–977 (1969). https://doi.org/10.1103/PhysRev.181.969

    Article  ADS  Google Scholar 

  32. Topkaya, R., Baykal, A., Demir, A.: Yafet-Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy. J. Nanoparticle Res. 15, (2013). https://doi.org/10.1007/s11051-012-1359-6

  33. Hemeda, O.M., Tawfik, A., Mostafa, M., Zaki, M., Abd El Ati, M.I.: Structural and magnetic properties of nano ferrite for magnetoelectric applications. J. Phys. Conf. Ser. 1253, 0–15 (2019). https://doi.org/10.1088/1742-6596/1253/1/012026

  34. Bajorek, A., Berger, C., Dulski, M., Łopadczak, P., Zubko, M., Prusik, K., Wojtyniak, M., Chrobak, A., Grasset, F., Randrianantoandro, N.: Microstructural and magnetic characterization of Ni0.5Zn0.5Fe2O4 ferrite nanoparticles. J. Phys. Chem. Solids. 129, 1–21 (2019). https://doi.org/10.1016/j.jpcs.2018.12.045

Download references

Acknowledgements

Atul Thakur and Preeti Thakur would like to acknowledge Gurujal, an initiative with district administration Gurugram for the financial assistance from project no.176, Amity Incubation grant from the Ministry of Electronics and Information Technology (MeitY) under Technology Incubation and Development of Entrepreneurs (TIDE 2.0) program and the startup nanoLatticeX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Thakur.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharti, M.K., Chalia, S., Thakur, P. et al. Microstructural Analysis and Effect of Spin-Canting on Magnetic Attributes of Single-Phase Polycrystalline Cobalt Ferrite Nanoparticles. J Supercond Nov Magn 35, 571–579 (2022). https://doi.org/10.1007/s10948-021-06101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06101-8

Keywords

Navigation