Skip to main content
Log in

Heterologous Production of Antimicrobial Peptides: Notes to Consider

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Heavy and irresponsible use of antibiotics in the last century has put selection pressure on the microbes to evolve even faster and develop more resilient strains. In the confrontation with such sometimes called “superbugs”, the search for new sources of biochemical antibiotics seems to have reached the limit. In the last two decades, bioactive antimicrobial peptides (AMPs), which are polypeptide chains with less than 100 amino acids, have attracted the attention of many in the control of microbial pathogens, more than the other types of antibiotics. AMPs are groups of components involved in the immune response of many living organisms, and have come to light as new frontiers in fighting with microbes. AMPs are generally produced in minute amounts within organisms; therefore, to address the market, they have to be either produced on a large scale through recombinant DNA technology or to be synthesized via chemical methods. Here, heterologous expression of AMPs within bacterial, fungal, yeast, plants, and insect cells, and points that need to be considered towards their industrialization will be reviewed.

Graphical Abstract

Sources of peptide production and their applications. Some AMPs directly extracted from natural sources, some of them are chemically synthesized either using liquid or solid phase peptides synthesis, and for large scale production, recombinant expression using heterologous expression systems have been used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Farrokhi N, Whitelegge JP, Brusslan JA (2008) Plant peptides and peptidomics. Plant Biotechnol J 6(2):105–134

    Article  CAS  PubMed  Google Scholar 

  2. Ezzati-Tabrizi R et al (2013) Insect inducible antimicrobial peptides and their applications. Curr Protein Pept Sci 14(8):698–710

    CAS  PubMed  Google Scholar 

  3. Mora C et al (2022) Over half of known human pathogenic diseases can be aggravated by climate change. Nat Clim Chang 12(9):869–875

    Article  PubMed  PubMed Central  Google Scholar 

  4. Papadopoulos T, Baltas KN, Balta ME (2020) The use of digital technologies by small and medium enterprises during COVID-19: Implications for theory and practice. Int J Inf Manage 55:102192

    Article  PubMed  PubMed Central  Google Scholar 

  5. Huang X et al (2020) Acinetobacter venetianus, a potential pathogen of red leg disease in freshwater-cultured whiteleg shrimp Penaeus vannamei. Aquac Rep 18:100543

    Article  Google Scholar 

  6. Ali E et al (2021) Extract of neem (Azadirachta indica) leaf exhibits bactericidal effect against multidrug resistant pathogenic bacteria of poultry. Vet Med Sci 7(5):1921–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fünfhaus A, Ebeling J, Genersch E (2018) Bacterial pathogens of bees. Curr Opin Insect Sci 26:89–96

    Article  PubMed  Google Scholar 

  8. Weldearegay YB et al (2019) Host-pathogen interactions of Mycoplasma mycoides in caprine and bovine precision-cut lung slices (PCLS) models. Pathogens 8(2):82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Algammal AM et al (2020) Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor oprL and toxA virulence genes and blaTEM, blaCTX-M, and tetA antibiotic-resistance genes. Sci Rep 10(1):1–12

    Article  Google Scholar 

  10. Ngalimat MS et al (2021) Plant growth-promoting bacteria as an emerging tool to manage bacterial rice pathogens. Microorganisms 9(4):682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sundin GW, Wang N (2018) Antibiotic resistance in plant-pathogenic bacteria. Annu Rev Phytopathol 56:161–180

    Article  CAS  PubMed  Google Scholar 

  12. Ferri M et al (2017) Antimicrobial resistance: a global emerging threat to public health systems. Crit Rev Food Sci Nutr 57(13):2857–2876

    Article  CAS  PubMed  Google Scholar 

  13. Huan Y et al (2020) Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol. https://doi.org/10.3389/fmicb.2020.582779

    Article  PubMed  PubMed Central  Google Scholar 

  14. Luong HX, Thanh TT, Tran TH (2020) Antimicrobial peptides - Advances in development of therapeutic applications. Life Sci 260:118407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang K-Y et al (2017) Identification of natural antimicrobial peptides from bacteria through metagenomic and metatranscriptomic analysis of high-throughput transcriptome data of Taiwanese oolong teas. BMC Syst Biol 11(7):29–44

    Google Scholar 

  16. Onime LA et al (2021) The rumen eukaryotome is a source of novel antimicrobial peptides with therapeutic potential. BMC Microbiol 21(1):1–13

    Article  Google Scholar 

  17. Mishra S et al (2021) Exploiting endophytic microbes as micro-factories for plant secondary metabolite production. Appl Microbiol Biotechnol 105(18):6579–6596

    Article  CAS  PubMed  Google Scholar 

  18. Huang Y et al (2022) Isolation of lipopeptide antibiotics from Bacillus siamensis: a potential biocontrol agent for Fusarium graminearum. Can J Microbiol 99(999):1–9

    Google Scholar 

  19. Ben Khedher M et al (2022) Application and challenge of 3rd generation sequencing for clinical bacterial studies. Int J Mol Sci 23(3):1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van der Does AM et al (2012) The human lactoferrin-derived peptide hLF1-11 exerts immunomodulatory effects by specific inhibition of myeloperoxidase activity. J Immunol 188(10):5012–5019

    Article  PubMed  Google Scholar 

  21. Mahlapuu M et al (2021) Evaluation of LL-37 in healing of hard-to-heal venous leg ulcers: a multicentric prospective randomized placebo-controlled clinical trial. Wound Repair Regen 29(6):938–950

    Article  PubMed  PubMed Central  Google Scholar 

  22. Huang Y et al (2021) Recombinant expression of antimicrobial peptides in Pichia pastoris: a strategy to inhibit the Penicillium expansum in pears. Postharvest Biol Technol 171:111298

    Article  CAS  Google Scholar 

  23. Shwaiki LN, Lynch KM, Arendt EK (2021) Future of antimicrobial peptides derived from plants in food application–A focus on synthetic peptides. Trends Food Sci Technol 112:312–324

    Article  CAS  Google Scholar 

  24. Meneguetti BT et al (2017) Antimicrobial peptides from fruits and their potential use as biotechnological tools—a review and outlook. Front Microbiol 7:2136

    Article  PubMed  PubMed Central  Google Scholar 

  25. Simons A, Alhanout K, Duval RE (2020) Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms 8(5):639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang H, Li P, Gu Q (2016) Heterologous expression and purification of plantaricin NC8, a two-peptide bacteriocin against Salmonella spp. from Lactobacillus plantarum ZJ316. Prot Exp Purif 127:28–34

    Article  CAS  Google Scholar 

  27. Zhang J et al (2011) Expression of plectasin in Pichia pastoris and its characterization as a new antimicrobial peptide against staphyloccocus and streptococcus. Protein Expr Purif 78(2):189–196

    Article  CAS  PubMed  Google Scholar 

  28. Dotson BR et al (2018) The antibiotic peptaibol alamethicin from Trichoderma permeabilises Arabidopsis root apical meristem and epidermis but is antagonised by cellulase-induced resistance to alamethicin. BMC Plant Biol 18(1):1–11

    Article  Google Scholar 

  29. Shenkarev ZO et al (2012) Recombinant expression and solution structure of antimicrobial peptide aurelin from jellyfish Aurelia aurita. Biochem Biophys Res Commun 429(1–2):63–69

    Article  CAS  PubMed  Google Scholar 

  30. Srinivasulu B et al (2008) Expression, purification and structural characterization of recombinant hepcidin, an antimicrobial peptide identified in Japanese flounder Paralichthys olivaceus. Prot Exp Purif 61(1):36–44

    Article  CAS  Google Scholar 

  31. Li L et al (2005) High level expression, purification, and characterization of the shrimp antimicrobial peptide, Ch-penaeidin Pichia pastoris. Prot Exp Purif 39(2):144–151

    Article  CAS  Google Scholar 

  32. Peng H et al (2010) Soluble expression and purification of a crab antimicrobial peptide scygonadin in different expression plasmids and analysis of its antimicrobial activity. Protein Expr Purif 70(1):109–115

    Article  CAS  PubMed  Google Scholar 

  33. Song D et al (2014) Heterologous expression and purification of dermaseptin S4 fusion in Escherichia coli and recovery of biological activity. Prep Biochem Biotechnol 44(6):598–607

    Article  CAS  PubMed  Google Scholar 

  34. Barksdale SM et al (2016) Peptides from American alligator plasma are antimicrobial against multi-drug resistant bacterial pathogens including Acinetobacter baumannii. BMC Microbiol 16(1):1–14

    Article  Google Scholar 

  35. Xing LW et al (2016) Recombinant expression and biological characterization of the antimicrobial peptide fowlicidin-2 in Pichia pastoris. Exp Ther Med 12(4):2324–2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boonpa K et al (2018) Heterologous expression and antimicrobial activity of OsGASR3 from rice (Oryza sativa L.). J Plant Physiol 224:95–102

    Article  PubMed  Google Scholar 

  37. Wang H, Zhao X, Lu F (2007) Heterologous expression of bovine lactoferricin in Pichia methanolica. Biochem Mosc 72(6):640–643

    Article  CAS  Google Scholar 

  38. Xu Z et al (2006) High-level expression of a soluble functional antimicrobial Peptide, human β-defensin 2 Escherichia coli. Biotechnol Prog 22(2):382–386

    Article  CAS  PubMed  Google Scholar 

  39. Nesa J et al (2020) Antimicrobial peptides from Bombyx mori: a splendid immune defense response in silkworms. RSC Adv 10(1):512–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu Q, Patočka J, Kuča K (2018) Insect antimicrobial peptides, a mini review. Toxins. https://doi.org/10.3390/toxins10110461

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chung C-R et al (2020) Characterization and identification of natural antimicrobial peptides on different organisms. Int J Mol Sci 21(3):986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kordi M et al (2022) Antimicrobial peptides with anticancer activity: today status, trends and their computational design. Arch Biochem Biophys 733:109484

    Article  PubMed  Google Scholar 

  43. Deb PK et al (2019) Protein/peptide drug delivery systems: practical considerations in pharmaceutical product development. Basic Fundamentals of Drug Delivery. Elsevier, pp 651–684

    Chapter  Google Scholar 

  44. Akbarian M et al (2022) Bioactive peptides: synthesis, sources, applications, and proposed mechanisms of action. Int J Mol Sci 23(3):1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Y et al (2014) Influence of promoter and signal peptide on the expression of pullulanase in Bacillus subtilis. Biotech Lett 36(9):1783–1789

    Article  CAS  Google Scholar 

  46. Ge R et al (2022) Machine learning for peptide structure, function, and design. Front Genet 13:1007635

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lei J et al (2019) The antimicrobial peptides and their potential clinical applications. Am J Transl Res 11(7):3919–3931

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Koehbach J, Craik DJ (2019) The vast structural diversity of antimicrobial peptides. Trends Pharmacol Sci 40(7):517–528

    Article  CAS  PubMed  Google Scholar 

  49. Tao H et al (2022) Efficient 3D conformer generation of cyclic peptides formed by a disulfide bond. J Cheminf 14(1):26

    Article  CAS  Google Scholar 

  50. Papagianni M (2003) Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol Adv 21(6):465–499

    Article  CAS  PubMed  Google Scholar 

  51. Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58(1):453–488

    Article  CAS  PubMed  Google Scholar 

  52. Walsh CT, O’Brien RV, Khosla C (2013) Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew Chem Int Ed 52(28):7098–7124

    Article  CAS  Google Scholar 

  53. Hancock REW, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551–1557

    Article  CAS  PubMed  Google Scholar 

  54. Rončević T, Puizina J, Tossi A (2019) Antimicrobial peptides as anti-infective agents in pre-post-antibiotic era? Int J Mol Sci. https://doi.org/10.3390/ijms20225713

    Article  PubMed  PubMed Central  Google Scholar 

  55. Koo HB, Seo J (2019) Antimicrobial peptides under clinical investigation. Pept Sci 111(5):e24122

    Article  Google Scholar 

  56. Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44(D1):D1087–D1093

    Article  CAS  PubMed  Google Scholar 

  57. Novković M et al (2012) DADP: the database of anuran defense peptides. Bioinformatics 28(10):1406–1407

    Article  PubMed  Google Scholar 

  58. Pirtskhalava M et al (2021) DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res 49(D1):D288–D297

    Article  CAS  PubMed  Google Scholar 

  59. Kang X et al (2019) DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci Data 6(1):148

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jhong J-H et al (2019) dbAMP: an integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data. Nucleic Acids Res 47(D1):D285–D297

    Article  CAS  PubMed  Google Scholar 

  61. Gueguen Y et al (2006) PenBase, the shrimp antimicrobial peptide penaeidin database: sequence-based classification and recommended nomenclature. Dev Comp Immunol 30(3):283–288

    Article  CAS  PubMed  Google Scholar 

  62. Hammami R et al (2009) PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acids Res 37(1):D963–D968

    Article  CAS  PubMed  Google Scholar 

  63. Hammami R et al (2010) BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiol 10(1):1–5

    Article  Google Scholar 

  64. van Heel AJ et al (2018) BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res 46(W1):W278–W281

    Article  PubMed  PubMed Central  Google Scholar 

  65. Piotto SP et al (2012) YADAMP: yet another database of antimicrobial peptides. Int J Antimicrob Agents 39(4):346–351

    Article  CAS  PubMed  Google Scholar 

  66. Waghu FH et al (2016) CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 44(D1):D1094–D1097

    Article  CAS  PubMed  Google Scholar 

  67. Gawde U et al (2023) CAMPR4: a database of natural and synthetic antimicrobial peptides. Nucleic Acids Res 51(D1):D377–D383

    Article  CAS  PubMed  Google Scholar 

  68. Gaspar D, Veiga AS, Castanho MA (2013) From antimicrobial to anticancer peptides. A Rev Front Microbiol 4:294

    Google Scholar 

  69. Lee, H.-T., et al., A large-scale structural classification of antimicrobial peptides. BioMed research international, 2015. 2015.

  70. Zhao X et al (2013) LAMP: a database linking antimicrobial peptides. PLoS ONE 8(6):e66557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wi C-I et al (2017) Application of a natural language processing algorithm to asthma ascertainment. An automated chart review. Am J Res Crit Care Med 196(4):430–437

    Article  Google Scholar 

  72. Seebah S et al (2007) 2007 Defensins knowledgebase: a manually curated database and information source focused on the defensins family of antimicrobial peptides. Nucleic Acids Res 35(1):265–268

    Article  Google Scholar 

  73. Fjell CD, Hancock RE, Cherkasov A (2007) AMPer: a database and an automated discovery tool for antimicrobial peptides. Bioinformatics 23(9):1148–1155

    Article  CAS  PubMed  Google Scholar 

  74. Pirtskhalava M et al (2016) DBAASP v. 2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res 44:D1104–D1112

    Article  CAS  PubMed  Google Scholar 

  75. Chu H-L et al (2015) Novel antimicrobial peptides with high anticancer activity and selectivity. PLoS ONE 10(5):e0126390

    Article  PubMed  PubMed Central  Google Scholar 

  76. Frederix PW, Patmanidis I, Marrink SJ (2018) Molecular simulations of self-assembling bio-inspired supramolecular systems and their connection to experiments. Chem Soc Rev 47(10):3470–3489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pant S et al (2020) Peptide-like and small-molecule inhibitors against Covid-19. J Biomol Struct Dynam 39(8):2904–2913

    Article  Google Scholar 

  78. Palmer N et al (2021) Molecular dynamics for antimicrobial peptide discovery. Infect Immun. https://doi.org/10.1128/iai.00703-20

    Article  PubMed  PubMed Central  Google Scholar 

  79. Phillips JC et al (2020) Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys. https://doi.org/10.1063/5.0014475

    Article  PubMed  PubMed Central  Google Scholar 

  80. Abraham MJ et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25

    Article  Google Scholar 

  81. Case DA et al (2021) Amber 2021. University of California, San Francisco

    Google Scholar 

  82. Melo MC et al (2020) Generalized correlation-based dynamical network analysis: a new high-performance approach for identifying allosteric communications in molecular dynamics trajectories. J Chem Phys. https://doi.org/10.1063/5.0018980

    Article  PubMed  PubMed Central  Google Scholar 

  83. Das P et al (2021) Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations. Nat Biomed Eng 5(6):613–623

    Article  CAS  PubMed  Google Scholar 

  84. Ruiz Puentes P et al (2022) Rational discovery of antimicrobial peptides by means of artificial intelligence. Membranes 12(7):708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ruiz Puentes P et al (2022) Rational discovery of antimicrobial peptides by means of artificial intelligence. Membranes (Basel) 12(7):708

    Article  CAS  PubMed  Google Scholar 

  86. Sowers A et al (2023) Advances in antimicrobial peptide discovery via machine learning and delivery via nanotechnology. Microorganisms 11(5):1129. https://doi.org/10.3390/microorganisms11051129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee EY et al (2017) What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus 7(6):20160153

    Article  PubMed  PubMed Central  Google Scholar 

  88. Jhong J-H et al (2022) dbAMP 2.0: updated resource for antimicrobial peptides with an enhanced scanning method for genomic and proteomic data. Nucleic Acids Res 50:D460–D470

    Article  CAS  PubMed  Google Scholar 

  89. Lin D et al (2022) Mining amphibian and insect transcriptomes for antimicrobial peptide sequences with rAMPage. Antibiotics 11(7):952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mirski T et al (2018) Utilisation of peptides against microbial infections–a review. Ann Agric Environ Med 25(2):205–210

    Article  CAS  Google Scholar 

  91. Santos R et al (2016) Bacterial biofilms in diabetic foot ulcers: potential alternative therapeutics. Microbial Biofilms-Importance Appl. https://doi.org/10.5772/63085

    Article  Google Scholar 

  92. Neshani A et al (2019) Epinecidin-1, a highly potent marine antimicrobial peptide with anticancer and immunomodulatory activities. BMC Pharmacol Toxicol 20(1):1–11

    Article  CAS  Google Scholar 

  93. Scarsini M et al (2015) Antifungal activity of cathelicidin peptides against planktonic and biofilm cultures of Candida species isolated from vaginal infections. Peptides 71:211–221

    Article  CAS  PubMed  Google Scholar 

  94. Madanchi H et al (2020) Antimicrobial peptides of the vaginal innate immunity and their role in the fight against sexually transmitted diseases. New Microbes New Infect 34:100627

    Article  CAS  PubMed  Google Scholar 

  95. Kordi M et al (2023) Antimicrobial peptides with anticancer activity: Today status, trends and their computational design. Arch Biochem Biophys 733:109484

    Article  CAS  PubMed  Google Scholar 

  96. Chen CH, Lu TK (2020) Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics 9(1):24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dijksteel GS et al (2021) Review: lessons learned from clinical trials using Antimicrobial Peptides (AMPs). Front Microbiol. https://doi.org/10.3389/fmicb.2021.616979

    Article  PubMed  PubMed Central  Google Scholar 

  98. Moretta A et al (2021) Antimicrobial peptides: a new hope in biomedical and pharmaceutical fields. Front Cell Infect Microbiol 11:453

    Article  Google Scholar 

  99. Fukuta S et al (2012) Transgenic tobacco plants expressing antimicrobial peptide bovine lactoferricin show enhanced resistance to phytopathogens. Plant Biotechnol 29(4):383–389

    Article  CAS  Google Scholar 

  100. Khademi M et al (2020) New recombinant antimicrobial peptides confer resistance to fungal pathogens in tobacco plants. Front Plant Sci 11:1236

    Article  PubMed  PubMed Central  Google Scholar 

  101. Chahardoli M, Fazeli A, Ghabooli M (2018) Recombinant production of bovine Lactoferrin-derived antimicrobial peptide in tobacco hairy roots expression system. Plant Physiol Biochem 123:414–421

    Article  CAS  PubMed  Google Scholar 

  102. Rai M et al (2016) Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food. J Food Sci Technol 53(9):3381–3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tkaczewska J (2020) Peptides and protein hydrolysates as food preservatives and bioactive components of edible films and coatings-A review. Trends Food Sci Technol 106:298–311

    Article  CAS  Google Scholar 

  104. Jia L et al (2021) Bioactive peptides from foods: production, function, and application. Food Funct 12(16):7108–7125

    Article  CAS  PubMed  Google Scholar 

  105. Xu Y (2021) Phage and phage lysins: new era of bio-preservatives and food safety agents. J Food Sci 86(8):3349–3373

    Article  CAS  PubMed  Google Scholar 

  106. Querido MM et al (2019) Self-disinfecting surfaces and infection control. Coll Surf, B 178:8–21

    Article  CAS  Google Scholar 

  107. Li FF, Brimble MA (2019) Using chemical synthesis to optimise antimicrobial peptides in the fight against antimicrobial resistance. Pure Appl Chem 91(2):181–198

    Article  CAS  Google Scholar 

  108. Beutler JA (2009) Natural products as a foundation for drug discovery. Curr Protoc Pharmacol. https://doi.org/10.1002/0471141755.ph0911s46

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kim DS et al (2019) A new prokaryotic expression vector for the expression of antimicrobial peptide abaecin using SUMO fusion tag. BMC Biotechnol 19(1):1–12

    Article  PubMed  PubMed Central  Google Scholar 

  110. Seyedjavadi SS et al (2021) Design, dimerization, and recombinant production of MCh-AMP1–derived peptide in Escherichia coli and evaluation of its antifungal activity and cytotoxicity. Front Fungal Biol 2:638595

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sinha R, Shukla P (2019) Antimicrobial peptides: recent insights on biotechnological interventions and future perspectives. Protein Pept Lett 26(2):79–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Luiz DP et al (2017) Heterologous expression of abaecin peptide from Apis mellifera in Pichia pastoris. Microb Cell Fact 16(1):1–7

    Article  Google Scholar 

  113. Liu Y et al (2016) Topical delivery of low-cost protein drug candidates made in chloroplasts for biofilm disruption and uptake by oral epithelial cells. Biomaterials 105:156–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Li Z et al (2011) Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Funct Integr Genom 11(1):63–70

    Article  CAS  Google Scholar 

  115. Silva-Carvalho AÉ et al (2021) Dissecting the relationship between antimicrobial peptides and mesenchymal stem cells. Pharmacol Ther 233:108021

    Article  PubMed  Google Scholar 

  116. DMM, Jaradat (2018) Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation. Amino Acids 50(1):39–68

    Article  Google Scholar 

  117. Hou W, Zhang X, Liu C-F (2017) Progress in chemical synthesis of peptides and proteins. Trans Tianjin Univ 23(5):401–419

    Article  Google Scholar 

  118. Behrendt R, White P, Offer J (2016) Advances in Fmoc solid-phase peptide synthesis. J Pept Sci 22(1):4–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Petrou C, Sarigiannis Y (2018) Peptide synthesis: methods, trends, and challenges. Peptide Appl Biomed Biotechnol Bioeng. https://doi.org/10.1016/B978-0-08-100736-5.00001-6

    Article  Google Scholar 

  120. Burcu, U., et al., Synthesis and Applications of Synthetic Peptides, in Peptide Synthesis, T.V. Jaya, Editor. 2019, IntechOpen: Rijeka

  121. Fischer PM, Zheleva DI (2002) Liquid-phase peptide synthesis on polyethylene glycol (PEG) supports using strategies based on the 9-fluorenylmethoxycarbonyl amino protecting group: application of PEGylated peptides in biochemical assays. J Peptide Sci: Off Publ Eur Peptide Soc 8(9):529–542

    Article  CAS  Google Scholar 

  122. Martin V et al (2020) Greening the synthesis of peptide therapeutics: an industrial perspective. RSC Adv 10(69):42457–42492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yeo JIN (2021) Liquid phase peptide synthesis via nanostar sieving. Angew Chem 133(14):7865–7874

    Article  Google Scholar 

  124. Chan W, White P (1999) Fmoc Solid Phase Peptide Synthesis: A Practical Approach. Oxford University Press, Oxford

    Book  Google Scholar 

  125. Isidro-Llobet A et al (2019) Sustainability challenges in peptide synthesis and purification: from R&D to production. J Org Chem 84(8):4615–4628

    Article  CAS  PubMed  Google Scholar 

  126. Mäde V, Els-Heindl S, Beck-Sickinger AG (2014) Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein J Org Chem 10(1):1197–1212

    Article  PubMed  PubMed Central  Google Scholar 

  127. Li W et al (2021) Chemically modified and conjugated antimicrobial peptides against superbugs. Chem Soc Rev 50(8):4932–4973

    Article  CAS  PubMed  Google Scholar 

  128. Guo L et al (2023) Lipidated variants of the antimicrobial peptide nisin produced via incorporation of methionine analogs for click chemistry show improved bioactivity. J Biol Chem 299(7):104845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Roscetto E et al (2021) Antimicrobial activity of a lipidated Temporin L analogue against carbapenemase-producing klebsiella pneumoniae clinical isolates. Antibiotics 10(11):1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Grimsey E et al (2020) 2020 The effect of lipidation and glycosylation on short cationic antimicrobial peptides. Biomembranes 8:183195

    Article  Google Scholar 

  131. Deo S et al (2022) Strategies for improving antimicrobial peptide production. Biotechnol Adv 59:107968

    Article  CAS  PubMed  Google Scholar 

  132. Wang L et al (2022) Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 7(1):1–27

    Google Scholar 

  133. Kordi, M., et al., Peptide production by molecular farming with antiviral effects. Agricultural Bioeconomy : Innovation and Foresight in the Post-COVID Era, 2022.

  134. Lou Y-C et al (2006) Roles of N-terminal pyroglutamate in maintaining structural integrity and pKa values of catalytic histidine residues in bullfrog ribonuclease 3. J Mol Biol 355(3):409–421

    Article  CAS  PubMed  Google Scholar 

  135. Moerman P (2014) Novel methods for C-terminal sequence analysis in the proteome era. Ghent University, Ghent

    Google Scholar 

  136. Prokai-Tatrai K (2012) Modifying peptide properties by prodrug design for. Peptide Transport Deliv Central Nerv Syst 61:155

    Google Scholar 

  137. Kuzmin D et al (2017) Effect of N-and C-terminal modifications on cytotoxic properties of antimicrobial peptide tachyplesin I. Bull Exp Biol Med 162(6):754–757

    Article  CAS  PubMed  Google Scholar 

  138. Romo TD et al (1808) 2011 Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations. Biochimica et Biophysica Acta (BBA) - Biomembr 8:2019–2030

    Google Scholar 

  139. Uzzell T et al (2003) Hagfish intestinal antimicrobial peptides are ancient cathelicidins. Peptides 24(11):1655–1667

    Article  CAS  PubMed  Google Scholar 

  140. Tasiemski A et al (2007) Hedistin: a novel antimicrobial peptide containing bromotryptophan constitutively expressed in the NK cells-like of the marine annelid. Nereis Diversicolor Develop Comp Immunol 31(8):749–762

    Article  CAS  Google Scholar 

  141. Castiglione F et al (2008) Determining the structure and mode of action of microbisporicin, a potent lantibiotic active against multiresistant pathogens. Chem Biol 15(1):22–31

    Article  CAS  PubMed  Google Scholar 

  142. Wu M-H et al (2020) Effects of glycosylation and D-amino acid substitution on the antitumor and antibacterial activities of bee venom peptide HYL. Bioconjug Chem 31(10):2293–2302

    Article  CAS  PubMed  Google Scholar 

  143. Lohans CT, Vederas JC (2014) Structural characterization of thioether-bridged bacteriocins. J Antibiot 67(1):23–30

    Article  CAS  Google Scholar 

  144. Vernen F et al (2019) Characterization of Tachyplesin peptides and their cyclized analogues to improve antimicrobial and anticancer properties. Int J Mol Sci. https://doi.org/10.3390/ijms20174184

    Article  PubMed  PubMed Central  Google Scholar 

  145. Wang G (2012) Post-translational modifications of natural antimicrobial peptides and strategies for peptide engineering. Curr Biotechnol 1(1):72–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Li D et al (2021) N-terminal acetylation of antimicrobial peptide L163 improves its stability against protease degradation. J Pept Sci 27(9):e3337

    Article  CAS  PubMed  Google Scholar 

  147. Xu J et al (2012) Green factory: plants as bioproduction platforms for recombinant proteins. Biotechnol Adv 30(5):1171–1184

    Article  CAS  PubMed  Google Scholar 

  148. Cohen P (2001) The role of protein phosphorylation in human health and disease. Eur J Biochem 268(19):5001–5010

    Article  CAS  PubMed  Google Scholar 

  149. Tan CSH et al (2009) Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases. Sci Signal 2(81):ra39–ra39

    Article  PubMed  Google Scholar 

  150. Meinnel T, Giglione C (2008) Protein lipidation meets proteomics. Front Biosci-Landmark 13(16):6326–6340

    Article  CAS  Google Scholar 

  151. Glenz K et al (2006) Production of a recombinant bacterial lipoprotein in higher plant chloroplasts. Nat Biotechnol 24(1):76–77

    Article  CAS  PubMed  Google Scholar 

  152. Chen P et al (2023) Embracing the era of antimicrobial peptides with marine organisms. Nat Product Rep. https://doi.org/10.1039/D3NP00031A

    Article  Google Scholar 

  153. Hou C et al (2014) Production of antibacterial peptide from bee venom via a new strategy for heterologous expression. Mol Biol Rep 41(12):8081–8091

    Article  CAS  PubMed  Google Scholar 

  154. Thomas X et al (2004) Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. J Biol Chem 279(27):28233–28242

    Article  CAS  PubMed  Google Scholar 

  155. Balducci E et al (2011) Structural and functional consequences induced by post-translational modifications in <i>α</i>-Defensins. Int J Peptides 2011:594723

    Article  Google Scholar 

  156. Zheng Q, Fang H, Liu W (2017) Post-translational modifications involved in the biosynthesis of thiopeptide antibiotics. Org Biomol Chem 15(16):3376–3390

    Article  CAS  PubMed  Google Scholar 

  157. Ingham AB, Moore RJ (2007) Recombinant production of antimicrobial peptides in heterologous microbial systems. Biotechnol Appl Biochem 47(1):1–9

    Article  CAS  PubMed  Google Scholar 

  158. Ko H et al (2021) A novel protein fusion partner, carbohydrate-binding module family 66, to enhance heterologous protein expression in Escherichia coli. Microb Cell Fact 20:1–12

    Article  Google Scholar 

  159. Lamer T et al (2022) SPI “Sandwich”: combined SUMO-peptide-Intein expression system and isolation procedure for improved stability and yield of peptides. Protein Sci 31(5):e4316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Pane K et al (2016) Rational design of a carrier protein for the production of recombinant toxic peptides in Escherichia coli. PLoS ONE 11(1):e0146552

    Article  PubMed  PubMed Central  Google Scholar 

  161. Goel A et al (2000) Relative position of the hexahistidine tag effects binding properties of a tumor-associated single-chain Fv construct. Gen Subj 1523(1):13–20

    Article  CAS  Google Scholar 

  162. Cantrell MS et al (2022) Expression and purification of a cleavable recombinant fortilin from Escherichia coli for structure activity studies. Protein Expr Purif 189:105989

    Article  CAS  PubMed  Google Scholar 

  163. Cipakova I, Hostinová E (2005) Production of the human-beta-defensin using Saccharomyces cerevisiae as a host. Protein Pept Lett 12(6):551–554

    Article  CAS  PubMed  Google Scholar 

  164. Ishizaki K et al (2015) Development of gateway binary vector series with four different selection markers for the liverwort Marchantia polymorpha. PLoS ONE 10(9):e0138876

    Article  PubMed  PubMed Central  Google Scholar 

  165. Komori T, Ueki J, Komari T (2011) Transformation vectors and expression of foreign genes in higher plants. Hist Technol Develop 1:55

    Google Scholar 

  166. Nakagawa T et al (2007) Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104(1):34–41

    Article  CAS  PubMed  Google Scholar 

  167. Chen P-Y et al (2003) Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol Breeding 11:287–293

    Article  CAS  Google Scholar 

  168. Jia B, Jeon CO (2016) High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biol 6(8):160196

    Article  PubMed  PubMed Central  Google Scholar 

  169. Hozjan V et al (2008) Ligand supplementation as a method to increase soluble heterologous protein production. Expert Rev Proteomics 5(1):137–143

    Article  CAS  PubMed  Google Scholar 

  170. Hong I-P et al (2007) Recombinant expression of human cathelicidin (hCAP18/LL-37) in Pichia pastoris. Biotech Lett 29(1):73–78

    Article  CAS  Google Scholar 

  171. Quezada-Rivera J et al (2019) Heterologous expression of bacteriocin E-760 in Chlamydomonas reinhardtii and functional analysis. Phyton 88(1):25

    Article  Google Scholar 

  172. Ishvaanjil B et al (2014) Heterologous expression of antimicrobial peptide LL-37 in Chinese cabbage with enhanced resistance to pathogens. Mong J Agric Sci 13(2):124–130

    Article  Google Scholar 

  173. Eustáquio AS et al (2005) Heterologous expression of novobiocin and clorobiocin biosynthetic gene clusters. Appl Environ Microbiol 71(5):2452–2459

    Article  PubMed  PubMed Central  Google Scholar 

  174. Zhang L et al (2020) Heterologous expression of the novel α-helical hybrid peptide PR-FO in Bacillus subtilis. Bioprocess Biosyst Eng 43:1619–1627

    Article  CAS  PubMed  Google Scholar 

  175. Zhang M et al (2018) Expression of a recombinant hybrid antimicrobial peptide magainin II-cecropin B in the mycelium of the medicinal fungus Cordyceps militaris and its validation in mice. Microb Cell Fact 17(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  176. Parachin NS et al (2012) Expression systems for heterologous production of antimicrobial peptides. Peptides 38(2):446–456

    Article  CAS  PubMed  Google Scholar 

  177. Shanmugaraj B et al (2021) Biotechnological insights on the expression and production of antimicrobial peptides in plants. Molecules 26(13):4032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172

    Article  PubMed  PubMed Central  Google Scholar 

  179. Eichmann J et al (2019) Selection of high producers from combinatorial libraries for the production of recombinant proteins in Escherichia coli and Vibrio natriegens. Front Bioeng Biotechnol 7:254

    Article  PubMed  PubMed Central  Google Scholar 

  180. Deng T et al (2017) The heterologous expression strategies of antimicrobial peptides in microbial systems. Protein Expr Purif 140:52–59

    Article  CAS  PubMed  Google Scholar 

  181. Hammers D, Carothers K, Lee S (2022) The role of bacterial proteases in microbe and host-microbe interactions. Curr Drug Targets 23(3):222–239

    Article  CAS  PubMed  Google Scholar 

  182. Chen CH, Lu TK (2020) Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics (Basel) 9(1):24

    Article  CAS  PubMed  Google Scholar 

  183. Li Y (2011) Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr Purif 80(2):260–267

    Article  CAS  PubMed  Google Scholar 

  184. Utkina L et al (2010) Heterologous expression of a synthetic gene encoding a novel hevein-type antimicrobial peptide of Leymus arenarius in Escherichia coli cells. Russ J Genet 46:1449–1454

    Article  CAS  Google Scholar 

  185. Chu X et al (2023) Heterologous expression and bioactivity determination of monochamus alternatus antibacterial peptide gene in Komagataella phaffii (Pichia pastoris). Int J Mol Sci 24(6):5421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Elhag O et al (2017) 2017 Screening, expression, purification and functional characterization of novel antimicrobial peptide genes from Hermetia illucens (L.). PLoS ONE 12(1):e0169582

    Article  PubMed  PubMed Central  Google Scholar 

  187. Kawai Y et al (2003) Heterologous expression of gassericin A, a bacteriocin produced by Lactobacillus gasseri LA39. Anim Sci J 74(1):45–51

    Article  CAS  Google Scholar 

  188. ROSLI, N., et al (2019) Heterologous expression of recombinant scygonadin antimicrobial peptide from mud crab scylla serrata. Malays Appl Biol 48(1):95–100

    Google Scholar 

  189. Maarof E et al (2011) Cloning and heterologous expression of’CDef1’, a ripening-induced defensin from’capsicum annuum’. Aust J Crop Sci 5(3):271–276

    CAS  Google Scholar 

  190. Nigutová K et al (2008) Heterologous expression of functionally active enterolysin A, class III bacteriocin from Enterococcus faecalis Escherichia coli. Prot Exp Purif 60(1):20–24

    Article  Google Scholar 

  191. Ram KS et al (2014) Cost effective purification of intein based syntetic cationic antimicrobial peptide expressed in cold shock expression system using salt inducible E coli GJ1158. J Microbiol Infect Dis 4(01):13–19

    Article  Google Scholar 

  192. Meiyalaghan S et al (2014) Expression and purification of the antimicrobial peptide GSL1 in bacteria for raising antibodies. BMC Res Notes 7(1):1–7

    Article  CAS  Google Scholar 

  193. Brede DA et al (2005) Heterologous production of antimicrobial peptides in Propionibacterium freudenreichii. Appl Environ Microbiol 71(12):8077–8084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Song D, Li P, Gu Q (2018) Cloning and heterologous expression of plantaricin ZJ5, a novel bacteriocin from Lactobacillus plantarum ZJ5, in Escherichia coli. Nat Prod Commun. https://doi.org/10.1177/1934578X1801301231

    Article  Google Scholar 

  195. Roldan-Tapia M et al (2017) Streptomyces as overexpression system for heterologous production of an antimicrobial peptide. Protein Pept Lett 24(6):483–488

    Article  CAS  PubMed  Google Scholar 

  196. Martín M et al (2007) Cloning, production and expression of the bacteriocin enterocin A produced by Enterococcus faecium PLBC21 in Lactococcus lactis. Appl Microbiol Biotechnol 76(3):667–675

    Article  PubMed  Google Scholar 

  197. Fernández M et al (2007) Heterologous expression of enterocin AS-48 in several strains of lactic acid bacteria. J Appl Microbiol 102(5):1350–1361

    Article  PubMed  Google Scholar 

  198. Herbel V, Schäfer H, Wink M (2015) Recombinant production of snakin-2 (an antimicrobial peptide from tomato) in E. coli and analysis of its bioactivity. Molecules 20(8):14889–14901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Beaulieu L et al (2007) Production of active pediocin PA-1 in Escherichia coli using a thioredoxin gene fusion expression approach: cloning, expression, purification, and characterization. Can J Microbiol 53(11):1246–1258

    Article  CAS  PubMed  Google Scholar 

  200. Tavares LS et al (2012) Antimicrobial activity of recombinant Pg-AMP1, a glycine-rich peptide from guava seeds. Peptides 37(2):294–300

    Article  CAS  PubMed  Google Scholar 

  201. Klocke M et al (2005) Heterologous expression of enterocin A, a bacteriocin from Enterococcus faecium, fused to a cellulose-binding domain in Escherichia coli results in a functional protein with inhibitory activity against Listeria. Appl Microbiol Biotechnol 67(4):532–538

    Article  CAS  PubMed  Google Scholar 

  202. Ma D-Y et al (2008) Expression and characterization of recombinant gallinacin-9 and gallinacin-8 in Escherichia coli. Protein Expr Purif 58(2):284–291

    Article  CAS  PubMed  Google Scholar 

  203. Zhou Q-F et al (2007) High-level production of a novel antimicrobial peptide perinerin in Escherichia coli by fusion expression. Curr Microbiol 54(5):366–370

    Article  CAS  PubMed  Google Scholar 

  204. Choi HJ et al (2005) Heterologous expression of human $\beta $-Defensin-1 in bacteriocin-producing laetoeoeeus lactis. J Microbiol Biotechnol 15(2):330–336

    CAS  Google Scholar 

  205. Odintsova TI et al (2009) A novel antifungal hevein-type peptide from Triticum kiharae seeds with a unique 10-cysteine motif. FEBS J 276(15):4266–4275

    Article  CAS  PubMed  Google Scholar 

  206. Ryazantsev DY et al (2014) A novel hairpin-like antimicrobial peptide from barnyard grass (Echinochloa crusgalli L.) seeds: structure–functional and molecular-genetics characterization. Biochimie 99:63–70

    Article  CAS  PubMed  Google Scholar 

  207. Gizatullina AK et al (2013) Recombinant production and solution structure of lipid transfer protein from lentil Lens culinaris. Biochem Biophys Res Commun 439(4):427–432

    Article  CAS  PubMed  Google Scholar 

  208. Bogdanov IV et al (2016) A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties. BMC Plant Biol 16:1–17

    Article  Google Scholar 

  209. Slavokhotova AA et al (2014) Novel antifungal α-hairpinin peptide from Stellaria media seeds: structure, biosynthesis, gene structure and evolution. Plant Mol Biol 84:189–202

    Article  CAS  PubMed  Google Scholar 

  210. Xu J et al (2020) Transgenic expression of antimicrobial peptides from black soldier fly enhance resistance against entomopathogenic bacteria in the silkworm, Bombyx mori. Insect Biochem Mol Biol 127:103487

    Article  CAS  PubMed  Google Scholar 

  211. Vandermies M, Fickers P (2019) Bioreactor-scale strategies for the production of recombinant protein in the yeast yarrowia lipolytica. Microorganisms 7(2):40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Madhavan A et al (2021) Customized yeast cell factories for biopharmaceuticals: from cell engineering to process scale up. Microb Cell Fact 20(1):124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Huang M et al (2017) Efficient protein production by yeast requires global tuning of metabolism. Nat Commun 8(1):1–12

    Article  Google Scholar 

  214. Lestari C, Novientri G (2021) Advantages of yeast-based recombinant protein technology as vaccine products against infectious diseases. IOP Conf Series: Earth Environ Sci 913(1):012099

    Google Scholar 

  215. Mohammadzadeh R et al (2021) Practical methods for expression of recombinant protein in the pichia pastoris system. Curr Protoc 1(6):e155

    Article  CAS  PubMed  Google Scholar 

  216. Kant P, Liu W-Z, Pauls KP (2009) PDC1, a corn defensin peptide expressed in Escherichia coli and Pichia pastoris inhibits growth of Fusarium graminearum. Peptides 30(9):1593–1599

    Article  CAS  PubMed  Google Scholar 

  217. Ma Y, Lee C-J, Park J-S (2020) Strategies for optimizing the production of proteins and peptides with multiple disulfide bonds. Antibiotics 9(9):541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Vieira Gomes AM et al (2018) Comparison of yeasts as hosts for recombinant protein production. Microorganisms 6(2):38

    Article  PubMed  PubMed Central  Google Scholar 

  219. Liu Z et al (2012) Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae. Biotechnol Bioeng 109(5):1259–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Zhao H et al (2015) Characterization of bioactive recombinant antimicrobial peptide parasin I fused with human lysozyme expressed in the yeast Pichia pastoris system. Enzyme Microb Technol 77:61–67

    Article  CAS  PubMed  Google Scholar 

  221. Meng D-M et al (2016) Expression, purification and initial characterization of a novel recombinant antimicrobial peptide Mytichitin-A in Pichia pastoris. Protein Expr Purif 127:35–43

    Article  CAS  PubMed  Google Scholar 

  222. Chen Z et al (2011) Recombinant antimicrobial peptide hPAB-β expressed in Pichia pastoris, a potential agent active against methicillin-resistant Staphylococcus aureus. Appl Microbiol Biotechnol 89(2):281–291

    Article  CAS  PubMed  Google Scholar 

  223. Jin F-L et al (2009) Expression and characterization of antimicrobial peptide CecropinAD in the methylotrophic yeast Pichia pastoris. Process Biochem 44(1):11–16

    Article  CAS  Google Scholar 

  224. Kuddus MR et al (2016) Expression, purification and characterization of the recombinant cysteine-rich antimicrobial peptide snakin-1 in Pichia pastoris. Protein Expr Purif 122:15–22

    Article  CAS  PubMed  Google Scholar 

  225. Chen X et al (2017) High-level heterologous production and Functional Secretion by recombinant Pichia pastoris of the shortest proline-rich antibacterial honeybee peptide Apidaecin. Sci Rep 7(1):1–9

    Google Scholar 

  226. Van Reenen C et al (2003) Characterization and heterologous expression of a class IIa bacteriocin, plantaricin 423 from Lactobacillus plantarum 423, in Saccharomyces cerevisiae. Int J Food Microbiol 81(1):29–40

    Article  PubMed  Google Scholar 

  227. Song X et al (2005) cDNA cloning, functional expression and antifungal activities of a dimeric plant defensin SPE10 from Pachyrrhizus erosus seeds. Plant Mol Biol 57(1):13–20

    Article  CAS  PubMed  Google Scholar 

  228. Vasil IK (2008) A history of plant biotechnology: from the cell theory of Schleiden and Schwann to biotech crops. Plant Cell Rep 27(9):1423–1440

    Article  CAS  PubMed  Google Scholar 

  229. Abdulhafiz F (2022) Plant cell culture technologies: a promising alternatives to produce high-value secondary metabolites. Arab J Chem 15(11):104161

    Article  CAS  Google Scholar 

  230. Ghidey M et al (2020) Making plants into cost-effective bioreactors for highly active antimicrobial peptides. New Biotechnol 56:63–70

    Article  CAS  Google Scholar 

  231. Bakare OO et al (2022) Plant antimicrobial peptides (PAMPs): features, applications, production, expression, and challenges. Molecules 27(12):3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Kordi M et al (2022) Peptide production by molecular farming with antiviral effects. Agricultural Bioeconomy. Elsevier

    Google Scholar 

  233. Goyal RK et al (2013) Expression of an engineered heterologous antimicrobial peptide in potato alters plant development and mitigates normal abiotic and biotic responses. PLoS ONE 8(10):e77505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Lacerda AF et al (2014) Antifungal defensins and their role in plant defense. Front Microbiol 5:116

    Article  PubMed  PubMed Central  Google Scholar 

  235. Kumar M, Kumar V, Prasad R (2020) Phyto-microbiome in stress regulation. Springer, Singapore

    Book  Google Scholar 

  236. Burnett MJ, Burnett AC (2020) Therapeutic recombinant protein production in plants: Challenges and opportunities. Plants, People, Planet 2(2):121–132

    Article  Google Scholar 

  237. Gleba Y, Klimyuk V, Marillonnet S (2005) Magnifection—a new platform for expressing recombinant vaccines in plants. Vaccine 23(17–18):2042–2048

    Article  CAS  PubMed  Google Scholar 

  238. Patiño-Rodríguez O et al (2013) Transient expression and characterization of the antimicrobial peptide protegrin-1 in Nicotiana tabacum for control of bacterial and fungal mammalian pathogens. Plant Cell. Tissue Organ Cult (PCTOC) 115:99–106

    Article  Google Scholar 

  239. Chaudhary S et al (2023) Efficient in planta production of amidated antimicrobial peptides that are active against drug-resistant ESKAPE pathogens. Nat Commun 14(1):1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Campos-Quevedo N et al (2013) Production of milk-derived bioactive peptides as precursor chimeric proteins in chloroplasts of Chlamydomonas reinhardtii. Plant Cell. Tissue and Organ Cult (PCTOC) 113(2):217–225

    Article  CAS  Google Scholar 

  241. Koo J, Park D, Kim H (2013) Expression of bovine lactoferrin N-lobe by the green alga. Chlorella vulgaris Algae 28(4):379–387

    CAS  Google Scholar 

  242. Wang K et al (2020) Chloroplast genetic engineering of a unicellular green alga Haematococcus pluvialis with expression of an antimicrobial peptide. Mar Biotechnol 22(4):572–580

    Article  CAS  Google Scholar 

  243. Rosales-Mendoza S, Paz-Maldonado LMT, Soria-Guerra RE (2012) Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: current status and perspectives. Plant Cell Rep 31(3):479–494

    Article  CAS  PubMed  Google Scholar 

  244. Barbosa Viana AA, Pelegrini PB, Grossi-de-Sá MF (2012) Plant biofarming: novel insights for peptide expression in heterologous systems. Pept Sci 98(4):416–427

    Article  Google Scholar 

  245. Mirzaee M et al (2021) Long-lasting stable expression of human LL-37 Antimicrobial peptide in transgenic barley plants. Antibiotics 10(8):898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Decker EL, Reski R (2004) The moss bioreactor. Curr Opin Plant Biol 7(2):166–170

    Article  CAS  PubMed  Google Scholar 

  247. Terrier B et al (2007) Two new disposable bioreactors for plant cell culture: the wave and undertow bioreactor and the slug bubble bioreactor. Biotechnol Bioeng 96(5):914–923

    Article  CAS  PubMed  Google Scholar 

  248. Decker EL, Reski R (2008) Current achievements in the production of complex biopharmaceuticals with moss bioreactors. Bioprocess Biosyst Eng 31(1):3–9

    Article  CAS  PubMed  Google Scholar 

  249. Ducos J-P, Terrier B, Courtois D (2009) Disposable bioreactors for plant micropropagation and mass plant cell culture. In: Eibl R, Eibl D (eds) Disposable bioreactors. Springer, Berlin

    Google Scholar 

  250. Verma D, Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol 145(4):1129–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Han S et al (2022) Two foreign antimicrobial peptides expressed in the chloroplast of Porphyridium purpureum possessed antibacterial properties. Mar Drugs 20(8):484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Islam S, Bezbaruah S, Kalita J (2016) A review on antimicrobial peptides from Bombyxmori L and their application in plant and animal disease control. J Adv Bio Biotechnol 9(3):2394–1081

    Google Scholar 

  253. Rahnamaeian M et al (2009) Insect peptide metchnikowin confers on barley a selective capacity for resistance to fungal ascomycetes pathogens. J Exp Bot 60(14):4105–4114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Almasia NI et al (2008) Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants. Mol Plant Pathol 9(3):329–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Hammond J et al (2006) Transgenic approaches to disease resistance in ornamental crops. J Crop Improv 17(1–2):155–210

    Article  CAS  Google Scholar 

  256. Jung Y-J (2013) Enhanced resistance to bacterial pathogen in transgenic tomato plants expressing cathelicidin antimicrobial peptide. Biotechnol Bioprocess Eng 18(3):615–624

    Article  CAS  Google Scholar 

  257. Jan P-S, Huang H-Y, Chen H-M (2010) Expression of a synthesized gene encoding cationic peptide cecropin B in transgenic tomato plants protects against bacterial diseases. Appl Environ Microbiol 76(3):769–775

    Article  CAS  PubMed  Google Scholar 

  258. Shi X et al (2019) Efficient production of antifungal proteins in plants using a new transient expression vector derived from tobacco mosaic virus. Plant Biotechnol J 17(6):1069–1080

    Article  CAS  PubMed  Google Scholar 

  259. DeGray G et al (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127(3):852–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Jaber E et al (2017) A gene encoding scots pine antimicrobial protein Sp-AMP2 (PR-19) confers increased tolerance against Botrytis cinerea in transgenic tobacco. Forests 9(1):10

    Article  Google Scholar 

  261. Aerts AM et al (2007) Arabidopsis thaliana plants expressing human beta-defensin-2 are more resistant to fungal attack: functional homology between plant and human defensins. Plant Cell Rep 26(8):1391–1398

    Article  CAS  PubMed  Google Scholar 

  262. Khan RS et al (2006) Transgenic potatoes expressing wasabi defensin peptide confer partial resistance to gray mold (Botrytis cinerea). Plant biotechnology 23(2):179–183

    Article  Google Scholar 

  263. Osusky M et al (2004) Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgenic Res 13(2):181–190

    Article  CAS  PubMed  Google Scholar 

  264. Wu T et al (2013) Expression of antimicrobial peptides thanatin (S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria. Gene 527(1):235–242

    Article  CAS  PubMed  Google Scholar 

  265. Rivero M et al (2012) Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens. J Biotechnol 157(2):334–343

    Article  CAS  PubMed  Google Scholar 

  266. Rahnamaeian M, Vilcinskas A (2012) Defense gene expression is potentiated in transgenic barley expressing antifungal peptide metchnikowin throughout powdery mildew challenge. J Plant Res 125(1):115–124

    Article  CAS  PubMed  Google Scholar 

  267. Muramoto N et al (2012) Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storage roots. Plant Cell Rep 31(6):987–997

    Article  CAS  PubMed  Google Scholar 

  268. Zhou M et al (2011) Expression of a novel antimicrobial peptide Penaeidin4–1 in creeping bentgrass (Agrostis stolonifera L.) enhances plant fungal disease resistance. PLoS ONE 6(9):e24677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Krens FA et al (2011) Performance and long-term stability of the barley hordothionin gene in multiple transgenic apple lines. Transgenic Res 20(5):1113–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Ntui VO et al (2010) Stable integration and expression of wasabi defensin gene in “Egusi” melon (Colocynthis citrullus L.) confers resistance to Fusarium wilt and Alternaria leaf spot. Plant Cell Rep 29(9):943–954

    Article  CAS  PubMed  Google Scholar 

  271. Choi M-S et al (2009) Expression of Br D1, a plant defensin from Brassica rapa, confers resistance against brown planthopper (Nilaparvata lugens) in transgenic rices. Mol Cells 28(2):131–137

    Article  CAS  PubMed  Google Scholar 

  272. Li S et al (2008) Transient expression of chicken alpha interferon gene in lettuce. J Zhejiang Univ Sci B 9(5):351–355

    Article  PubMed  PubMed Central  Google Scholar 

  273. Yevtushenko DP, Misra S (2007) Comparison of pathogen-induced expression and efficacy of two amphibian antimicrobial peptides, MsrA2 and temporin A, for engineering wide-spectrum disease resistance in tobacco. Plant Biotechnol J 5(6):720–734

    Article  CAS  PubMed  Google Scholar 

  274. Weber W, Fussenegger M (2009) Insect cell-based recombinant protein production. Cell and tissue reaction engineering. Springer, pp 263–277

    Chapter  Google Scholar 

  275. Vilcinskas A (2013) Yellow Biotechnology IIInsect Biotechnology in Plant Protectionand Industry. Springer, Berlin

    Google Scholar 

  276. Vilcinskas A (2011) Anti-infective therapeutics from the Lepidopteran model host Galleria mellonella. Curr Pharm Des 17(13):1240–1245

    Article  CAS  PubMed  Google Scholar 

  277. Käßer L et al (2022) The effect of different insect cell culture media on the efficiency of protein production by Spodoptera frugiperda cells. Electron J Biotechnol 56:54–64

    Article  Google Scholar 

  278. Zitzmann J et al (2017) Process optimization for recombinant protein expression in insect cells. In: Gowder SJT (ed) New insights into cell culture technology. InTech, London, pp 43–97

    Google Scholar 

  279. Shu B et al (2017) Transcriptome analysis of Spodoptera frugiperda Sf9 cells reveals putative apoptosis-related genes and a preliminary apoptosis mechanism induced by azadirachtin. Sci Rep 7(1):1–13

    Article  Google Scholar 

  280. Lemaitre RP et al (2019) FlexiBAC: a versatile, open-source baculovirus vector system for protein expression, secretion, and proteolytic processing. BMC Biotechnol 19(1):1–11

    Article  Google Scholar 

  281. Harrison RL, Jarvis DL (2007) Transforming lepidopteran insect cells for continuous recombinant protein expression. Baculovirus and Insect Cell Expression Protocols. Springer, Berlin, pp 299–315

    Google Scholar 

  282. Valore EV et al (1998) Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Investig 101(8):1633–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Nakamura I et al (2001) Production of Recombinant Bovine Lactoferrin N-lobe in insect cells and its antimicrobial activity. Protein Expr Purif 21(3):424–431

    Article  CAS  PubMed  Google Scholar 

  284. Almasia NI et al (2017) Successful production of the potato antimicrobial peptide Snakin-1 in baculovirus-infected insect cells and development of specific antibodies. BMC Biotechnol 17(1):75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Käßer L et al (2022) Process intensification for the continuous production of an antimicrobial peptide in stably-transformed Sf-9 insect cells. Sci Rep 12(1):1086

    Article  PubMed  PubMed Central  Google Scholar 

  286. Müller H, Salzig D, Czermak P (2015) Considerations for the process development of insect-derived antimicrobial peptide production. Biotechnol Prog 31(1):1–11

    Article  PubMed  Google Scholar 

  287. Panteleev PV, Ovchinnikova TV (2017) Improved strategy for recombinant production and purification of antimicrobial peptide tachyplesin I and its analogs with high cell selectivity. Biotechnol Appl Biochem 64(1):35–42

    Article  CAS  PubMed  Google Scholar 

  288. Mao R et al (2015) Optimization of expression conditions for a novel NZ2114-derived antimicrobial peptide-MP1102 under the control of the GAP promoter in Pichia pastoris X-33. BMC Microbiol 15(1):57

    Article  PubMed  PubMed Central  Google Scholar 

  289. Wei Q et al (2005) Facilitation of expression and purification of an antimicrobial peptide by fusion with baculoviral polyhedrin in Escherichia coli. Appl Environ Microbiol 71(9):5038–5043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Beckert A et al (2015) Two c-type lysozymes boost the innate immune system of the invasive ladybird Harmonia axyridis. Dev Comp Immunol 49(2):303–312

    Article  CAS  PubMed  Google Scholar 

  291. Aoki W, Ueda M (2013) Characterization of antimicrobial peptides toward the development of novel antibiotics. Pharmaceuticals 6(8):1055–1081

    Article  PubMed  PubMed Central  Google Scholar 

  292. Bogomolovas J et al (2009) Screening of fusion partners for high yield expression and purification of bioactive viscotoxins. Protein Expr Purif 64(1):16–23

    Article  CAS  PubMed  Google Scholar 

  293. Zhou L et al (2009) Expression and purification the antimicrobial peptide CM4 in Escherichia coli. Biotech Lett 31(3):437–441

    Article  CAS  Google Scholar 

  294. Zhou L et al (2009) TrxA mediating fusion expression of antimicrobial peptide CM4 from multiple joined genes in Escherichia coli. Protein Expr Purif 64(2):225–230

    Article  CAS  PubMed  Google Scholar 

  295. Li X, Jiang Y, Lin Y (2022) Production of antimicrobial peptide arasin-like Sp in Escherichia coli via an ELP-intein self-cleavage system. J Biotechnol 347:49–55

    Article  CAS  PubMed  Google Scholar 

  296. Zorko M, Jerala R (2010) Production of recombinant antimicrobial peptides in bacteria. Antimicrobial Peptides. Springer, Berlin, pp 61–76

    Chapter  Google Scholar 

  297. Abd Elhameed HA et al (2019) Purification of proteins with native terminal sequences using a Ni (II)-cleavable C-terminal hexahistidine affinity tag. Protein Expr Purif 159:53–59

    Article  CAS  PubMed  Google Scholar 

  298. Gwak WS et al (2018) Enhanced production of recombinant protein by fusion expression with Ssp DnaB mini-intein in the baculovirus expression system. Viruses 10(10):523

    Article  PubMed  PubMed Central  Google Scholar 

  299. Xing L et al (2011) Streamlined protein expression and purification using cleavable self-aggregating tags. Microb Cell Fact 10(1):42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Gramespacher JA et al (2018) Improved protein splicing using embedded split inteins. Protein Sci 27(3):614–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Schreiber C et al (2017) A high-throughput expression screening platform to optimize the production of antimicrobial peptides. Microb Cell Fact 16(1):1–13

    Article  Google Scholar 

  302. Yasukawa T et al (1995) Increase of solubility of foreign proteins in escherichia coli by coproduction of the bacterial thioredoxin (∗). J Biol Chem 270(43):25328–25331

    Article  CAS  PubMed  Google Scholar 

  303. Ishida H et al (2016) Overexpression of antimicrobial, anticancer, and transmembrane peptides in Escherichia coli through a calmodulin-peptide fusion system. J Am Chem Soc 138(35):11318–11326

    Article  CAS  PubMed  Google Scholar 

  304. Supungul P et al (2008) Cloning, expression and antimicrobial activity of crustinPm1, a major isoform of crustin, from the black tiger shrimp Penaeus monodon. Dev Comp Immunol 32(1):61–70

    Article  CAS  PubMed  Google Scholar 

  305. Peng H et al (2012) Optimized production of scygonadin in Pichia pastoris and analysis of its antimicrobial and antiviral activities. Protein Expr Purif 82(1):37–44

    Article  CAS  PubMed  Google Scholar 

  306. Amparyup P et al (2008) Molecular cloning, genomic organization and recombinant expression of a crustin-like antimicrobial peptide from black tiger shrimp Penaeus monodon. Mol Immunol 45(4):1085–1093

    Article  CAS  PubMed  Google Scholar 

  307. Richard J (2017) Challenges in oral peptide delivery: lessons learnt from the clinic and future prospects. Ther Deliv 8(8):663–684

    Article  CAS  PubMed  Google Scholar 

  308. Wang C et al (2021) Antimicrobial peptides towards clinical application: Delivery and formulation. Adv Drug Deliv Rev 175:113818

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MK, PG, and HV: drafted the manuscript. MK: drew the figures. NF and MT: reviewed and revised the manuscript. All authors read the final version of the manuscript and approved it.

Corresponding authors

Correspondence to Naser Farrokhi or Maryam Tabarzad.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kordi, M., Talkhounche, P.G., Vahedi, H. et al. Heterologous Production of Antimicrobial Peptides: Notes to Consider. Protein J 43, 129–158 (2024). https://doi.org/10.1007/s10930-023-10174-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10174-w

Keywords

Navigation