Skip to main content
Log in

Production of Industrial Enzymes via Pichia pastoris as a Cell Factory in Bioreactor: Current Status and Future Aspects

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Industrial enzymes have been widely preferred in various industries such as chemical production, food & beverage, pharmaceutical, textile, cosmetics, etc. due to the advancements in recent years. They are considered more economic than using whole cells and more environmental-friendly than chemical alternatives. Since the demand for industrial enzymes has been rising, the development of production strategies has been gathered speed. In this respect, the efficiency of Pichia pastoris (P. pastoris) as a host for heterologous protein expression has proved and gained attention due to its great potential for large-scale studies. Especially high-cell density fermentation of P. pastoris is a well-studied and efficient method. Moreover, the improvements in the state of art gene-editing tools have broadened the possibilities of strain improvement for P. pastoris. This review summarized the role of P. pastoris as a cell factory by accentuating the accomplishments in biocatalyst production. Moreover, the benefits and challenges of the most relevant expression systems named Escherichia coli (E. coli), Saccharomyces cerevisiae (S. cerevisiae), P. pastoris and recent evolvements and future directions were revealed in detail. Subsequently, offers for prospects and the latest evolvements to enhance the recombinant protein production were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zhu D, Wu Q, Wang N (2011) Industrial enzymes. Comprehensive biotechnology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  2. Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351

    Article  CAS  Google Scholar 

  3. Adrio JL, Demain AL (2010) Recombinant organisms for production of industrial products. Bioeng Bugs 1:116–131. https://doi.org/10.4161/bbug.1.2.10484

    Article  PubMed  Google Scholar 

  4. Ferrer-Miralles N, Villaverde A, BacteriFerrer-Miralles N, Villaverde A (2013) Bacterial cell factories for recombinant protein production; expanding the catalogue. Microbial Cell Factories 12(1):113. https://doi.org/10.1186/1475-2859-12-113al

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172

    Article  PubMed  PubMed Central  Google Scholar 

  6. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421

    Article  CAS  Google Scholar 

  7. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22(4):249–270

    Article  CAS  Google Scholar 

  8. Buckholz RG, Gleeson MAG (1991) Yeast systems for the commercial production of heterologous proteins. Bio/Technology. https://doi.org/10.1038/nbt1191-1067

    Article  Google Scholar 

  9. Kurtzman CP (2009) Biotechnological strains of Komagataella (Pichia) pastoris are Komagataella phaffii as determined from multigene sequence analysis. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-009-0638-4

    Article  PubMed  Google Scholar 

  10. Heilig ML (1994) Enzymic degradation of nucleic acids in SCIP materials. ACM SIGGRAPH Comput Graph 28:131–134

    Article  Google Scholar 

  11. Cregg JM, Barringer KJ, Hessler AY, Madden KR (1985) Pichia pastoris as a host system for transformations. Mol Cell Biol. https://doi.org/10.1128/mcb.5.12.3376

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hasslacher M, Schall M, Hayn M et al (1997) High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts. Protein Expr Purif. https://doi.org/10.1006/prep.1997.0765

    Article  PubMed  Google Scholar 

  13. Liu WC, Gong T, Wang QH et al (2016) Scaling-up Fermentation of Pichia pastoris to demonstration-scale using new methanol-feeding strategy and increased air pressure instead of pure oxygen supplement. Sci Rep 6:1–12. https://doi.org/10.1038/srep18439

    Article  CAS  Google Scholar 

  14. Baeshen NA, Baeshen MN, Sheikh A et al (2014) Cell factories for insulin production. Microb Cell Fact. https://doi.org/10.1186/s12934-014-0141-0

    Article  PubMed  PubMed Central  Google Scholar 

  15. Thongekkaew J, Ikeda H, Masaki K, Iefuji H (2008) An acidic and thermostable carboxymethyl cellulase from the yeast Cryptococcus sp. S-2: purification, characterization and improvement of its recombinant enzyme production by high cell-density fermentation of Pichia pastoris. Protein Expr Purif. https://doi.org/10.1016/j.pep.2008.03.021

    Article  PubMed  Google Scholar 

  16. Gomes AR, Byregowda SM, Veeregowda BM, Balamurugan V (2016) An overview of heterologous expression host systems for the production of recombinant proteins. Adv Anim Vet Sci. https://doi.org/10.14737/journal.aavs/2016/4.7.346.356

    Article  Google Scholar 

  17. Ahmad I, Nawaz N, Darwesh NM et al (2018) Overcoming challenges for amplified expression of recombinant proteins using Escherichia coli. Protein Expr Purif 144:12–18

    Article  CAS  Google Scholar 

  18. Sezonov G, Joseleau-Petit D, D’Ari R (2007) Escherichia coli physiology in Luria-Bertani broth. J Bacteriol. https://doi.org/10.1128/JB.01368-07

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sivashanmugam A, Murray V, Cui C et al (2009) Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. Protein Sci. https://doi.org/10.1002/pro.102

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pope B, Kent HM (1996) High efficiency 5 min transformation of Escherichia coli. Nucleic Acids Res. https://doi.org/10.1093/nar/24.3.536

    Article  PubMed  PubMed Central  Google Scholar 

  21. Peleg Y, Unger T (2012) Resolving bottlenecks for recombinant protein expression in E. coli. Methods Mol Biol. https://doi.org/10.1007/978-1-61779-349-3_12

    Article  PubMed  Google Scholar 

  22. Valero F (2012) Heterologous expression systems for lipases: a review. Methods Mol Biol 861:161–178

    Article  CAS  Google Scholar 

  23. Liu ZW, Yin HX, Yi XP et al (2012) Constitutive expression of barley α-amylase in Pichia pastoris by high-density cell culture. Mol Biol Rep. https://doi.org/10.1007/s11033-011-1390-1

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu Z, Tyo KEJ, Martínez JL et al (2012) Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae. Biotechnol Bioeng. https://doi.org/10.1002/bit.24409

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65(4):363–372

    Article  CAS  Google Scholar 

  26. Hahn-Hägerdal B, Karhumaa K, Fonseca C et al (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–953

    Article  Google Scholar 

  27. Morton CL, Potter PM (2000) Comparison of Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Spodoptera frugiperda, and COS7 cells for recombinant gene expression: application to a rabbit liver carboxylesterase. Appl Biochem Biotechnol Part B Mol Biotechnol. https://doi.org/10.1385/MB:16:3:193

    Article  Google Scholar 

  28. Duman ZE, Duraksoy BB, Aktaş F et al (2020) High-level heterologous expression of active Chaetomium thermophilum FDH in Pichia pastoris. Enzyme Microb Technol. https://doi.org/10.1016/j.enzmictec.2020.109552

    Article  PubMed  Google Scholar 

  29. Yang S, Kuang Y, Li H et al (2013) Enhanced production of recombinant secretory proteins in Pichia pastoris by optimizing Kex2 P1’ site. PLoS One. https://doi.org/10.1371/journal.pone.0075347

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shu M, Shen W, Wang X et al (2015) Expression, activation and characterization of porcine trypsin in Pichia pastoris GS115. Protein Expr Purif. https://doi.org/10.1016/j.pep.2015.06.014

    Article  PubMed  Google Scholar 

  31. Liu WC, Inwood S, Gong T et al (2019) Fed-batch high-cell-density fermentation strategies for Pichia pastoris growth and production. Crit Rev Biotechnol 39:258–271. https://doi.org/10.1080/07388551.2018.1554620

    Article  CAS  PubMed  Google Scholar 

  32. Juturu V, Wu JC (2018) Heterologous protein expression in Pichia pastoris: latest research progress and applications. ChemBioChem 19:7–21. https://doi.org/10.1002/cbic.201700460

    Article  CAS  PubMed  Google Scholar 

  33. Kittl R, Gonaus C, Pillei C et al (2012) Constitutive expression of Botrytis aclada laccase in Pichia pastoris. Bioengineered. https://doi.org/10.4161/bioe.20037

    Article  PubMed  PubMed Central  Google Scholar 

  34. Qin X, Qian J, Yao G et al (2011) GAP promoter library for fine-tuning of gene expression in Pichia pastoris. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02843-10

    Article  PubMed  PubMed Central  Google Scholar 

  35. YaPing W, Ben R, Hong Y et al (2017) High-level expression of L-glutamate oxidase in Pichia pastoris using multi-copy expression strains and high cell density cultivation. Protein Expr Purif 129:108–114. https://doi.org/10.1016/j.pep.2016.09.014

    Article  CAS  PubMed  Google Scholar 

  36. De Schutter K, Lin YC, Tiels P et al (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol. https://doi.org/10.1038/nbt.1544

    Article  PubMed  Google Scholar 

  37. Mattanovich D, Graf A, Stadlmann J et al (2009) Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microb Cell Fact. https://doi.org/10.1186/1475-2859-8-29

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu W, Xiang H, Zhang T et al (2020) Development of a new high-cell density fermentation strategy for enhanced production of a fungus β-glucosidase in Pichia pastoris. Front Microbiol 11:1–16. https://doi.org/10.3389/fmicb.2020.01988

    Article  CAS  Google Scholar 

  39. Giesselmann E, Becker B, Schmitt MJ (2017) Production of fluorescent and cytotoxic K28 killer toxin variants through high cell density fermentation of recombinant Pichia pastoris. Microb Cell Fact. https://doi.org/10.1186/s12934-017-0844-0

    Article  PubMed  PubMed Central  Google Scholar 

  40. Invitrogen Corporation (2002) Pichia fermentation process guidelines overview overview, continued. Prog Bot 67:1–11

    Google Scholar 

  41. Li C, Lin Y, Zheng X et al (2015) Combined strategies for improving expression of Citrobacter amalonaticus phytase in Pichia pastoris. BMC Biotechnol 15:1–11. https://doi.org/10.1186/s12896-015-0204-2

    Article  CAS  Google Scholar 

  42. Cos O, Ramón R, Montesinos JL, Valero F (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact 5:1–20

    Article  Google Scholar 

  43. Berrios J, Flores MO, Díaz-Barrera A et al (2017) A comparative study of glycerol and sorbitol as co-substrates in methanol-induced cultures of Pichia pastoris: temperature effect and scale-up simulation. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-016-1895-7

    Article  PubMed  Google Scholar 

  44. Katrolia P, Yan Q, Jia H et al (2011) Molecular cloning and high-level expression of a β-galactosidase gene from Paecilomyces aerugineus in Pichia pastoris. J Mol Catal B Enzym. https://doi.org/10.1016/j.molcatb.2011.01.004

    Article  Google Scholar 

  45. Zheng X, Zhang Y, Liu X et al (2020) High-level expression and biochemical properties of a thermo-alkaline pectate lyase from Bacillus sp. RN1 in Pichia pastoris with potential in Ramie degumming. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.00850

    Article  PubMed  PubMed Central  Google Scholar 

  46. Meng Y, Zhao M, Yang M et al (2014) Production and characterization of recombinant glucose oxidase from aspergillus niger expressed in Pichia pastoris. Lett Appl Microbiol 58:393–400. https://doi.org/10.1111/lam.12202

    Article  CAS  PubMed  Google Scholar 

  47. Yang Y, Huang L, Wang J et al (2014) Efficient expression, purification, and characterization of a novel FAD-dependent glucose dehydrogenase from Aspergillus terreus in Pichia pastoris. J Microbiol Biotechnol. https://doi.org/10.4014/jmb.1401.01061

    Article  PubMed  Google Scholar 

  48. Shi XL, Feng MQ, Shi J et al (2007) High-level expression and purification of recombinant human catalase in Pichia pastoris. Protein Expr Purif. https://doi.org/10.1016/j.pep.2007.02.008

    Article  PubMed  Google Scholar 

  49. Majeke BM, García-Aparicio M, Biko OD et al (2020) Synergistic codon optimization and bioreactor cultivation toward enhanced secretion of fungal lignin peroxidase in Pichia pastoris: enzymatic valorization of technical (industrial) lignins. Enzyme Microb Technol. https://doi.org/10.1016/j.enzmictec.2020.109593

    Article  PubMed  Google Scholar 

  50. Türkanoğlu Özçelik A, Ersöz F, İnan M (2019) Extracellular production of the recombinant bacterial transglutaminase in Pichia pastoris. Protein Expr Purif. https://doi.org/10.1016/j.pep.2019.03.003

    Article  PubMed  Google Scholar 

  51. Zheng J, Lan X, Li X, jun, et al (2019) High-level expression and characterization of a stereoselective lipase from Aspergillus oryzae in Pichia pastoris. Protein Expr Purif. https://doi.org/10.1016/j.pep.2018.10.012

    Article  PubMed  Google Scholar 

  52. Jahic M, Wallberg F, Bollok M et al (2003) Temperature limited fed-batch technique for control of proteolysis in Pichia pastoris bioreactor cultures. Microb Cell Fact 2:1–11. https://doi.org/10.1186/1475-2859-2-6

    Article  Google Scholar 

  53. Zhong X, Peng L, Zheng S et al (2004) Secretion, purification, and characterization of a recombinant Aspergillus oryzae tannase in Pichia pastoris. Protein Expr Purif. https://doi.org/10.1016/j.pep.2004.04.016

    Article  PubMed  Google Scholar 

  54. Huang J, Yang Z, Guan F et al (2013) A novel mono- and diacylglycerol lipase highly expressed in Pichia pastoris and its application for food emulsifier preparation. Process Biochem. https://doi.org/10.1016/j.procbio.2013.08.021

    Article  Google Scholar 

  55. Chen CC, Wu PH, Huang CT, Cheng KJ (2004) A Pichia pastoris fermentation strategy for enhancing the heterologous expression of an Escherichia coli phytase. Enzyme Microb Technol. https://doi.org/10.1016/j.enzmictec.2004.05.007

    Article  Google Scholar 

  56. Joye IJ, Beliën T, Brijs K et al (2010) Characterisation of the first wheat (Triticum aestivum L.) nucleotide pyrophosphatase/phosphodiesterase resembling mammalian counterparts. J Cereal Sci. https://doi.org/10.1016/j.jcs.2010.01.009

    Article  Google Scholar 

  57. Elena C, Ravasi P, Cerminati S et al (2016) Pichia pastoris engineering for the production of a modified phospholipase C. Process Biochem. https://doi.org/10.1016/j.procbio.2016.08.022

    Article  Google Scholar 

  58. Chen X, Meng K, Shi P et al (2012) High-level expression of a novel Penicillium endo-1,3(4)-β-D-glucanase with high specific activity in Pichia pastoris. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-012-1087-z

    Article  PubMed  Google Scholar 

  59. He M, Wu D, Wu J, Chen J (2014) Enhanced expression of endoinulinase from Aspergillus niger by codon optimization in Pichia pastoris and its application in inulooligosaccharide production. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-013-1341-z

    Article  PubMed  Google Scholar 

  60. Li YY, Zhong KX, Hu AH et al (2015) High-level expression and characterization of a thermostable xylanase mutant from Trichoderma reesei in Pichia pastoris. Protein Expr Purif. https://doi.org/10.1016/j.pep.2014.11.014

    Article  PubMed  Google Scholar 

  61. Chen L, Zhou X, Fan W, Zhang Y (2008) Expression, purification and characterization of a recombinant Lipomyces starkey dextranase in Pichia pastoris. Protein Expr Purif. https://doi.org/10.1016/j.pep.2007.10.021

    Article  PubMed  PubMed Central  Google Scholar 

  62. Schilling BM, Goodrick JC, Wan NC (2001) Scale-up of a high cell-density continuous culture with Pichia pastoris X-33 for the constitutive expression of rh-chitinase. Biotechnol Prog. https://doi.org/10.1021/bp010041e

    Article  PubMed  Google Scholar 

  63. Peng XB, Chen GJ, Han ZG, Yang JK (2019) High-level secretive expression of a novel achieved Talaromyces cellulolyticus endo-polygalacturonase in Pichia pastoris by improving gene dosage for hydrolysis of natural pectin. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-019-2657-2

    Article  PubMed  Google Scholar 

  64. Zhou X, Yu Y, Tao J, Yu L (2014) Production of LYZL6, a novel human c-type lysozyme, in recombinant Pichia pastoris employing high cell density fed-batch fermentation. J Biosci Bioeng. https://doi.org/10.1016/j.jbiosc.2014.03.009

    Article  PubMed  Google Scholar 

  65. Naested H, Kramhøft B, Lok F et al (2006) Production of enzymatically active recombinant full-length barley high pI α-glucosidase of glycoside family 31 by high cell-density fermentation of Pichia pastoris and affinity purification. Protein Expr Purif. https://doi.org/10.1016/j.pep.2005.10.008

    Article  PubMed  Google Scholar 

  66. Zhu A, Monahan C, Zhang Z et al (1995) High-level expression and purification of coffee bean α-galactosidase produced in the yeast Pichia pastoris. Arch Biochem Biophys. https://doi.org/10.1006/abbi.1995.9928

    Article  PubMed  Google Scholar 

  67. Li Y, Yi P, Liu J et al (2018) High-level expression of an engineered Β-mannanase (mRmMan5A) in Pichia pastoris for manno-oligosaccharide production using steam explosion pretreated palm kernel cake. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.01.138

    Article  PubMed  PubMed Central  Google Scholar 

  68. Veana F, Fuentes-Garibay JA, Aguilar CN et al (2014) Gene encoding a novel invertase from a xerophilic aspergillus niger strain and production of the enzyme in Pichia pastoris. Enzyme Microb Technol. https://doi.org/10.1016/j.enzmictec.2014.05.001

    Article  PubMed  Google Scholar 

  69. Li Y, Zhang L, Ding Z, Shi G (2013) Constitutive expression of a novel isoamylase from Bacillus lentus in Pichia pastoris for starch processing. Process Biochem. https://doi.org/10.1016/j.procbio.2013.07.001

    Article  Google Scholar 

  70. Jin P, Kang Z, Zhang N et al (2014) High-yield novel leech hyaluronidase to expedite the preparation of specific hyaluronan oligomers. Sci Rep. https://doi.org/10.1038/srep04471

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhao H, Blazanovic K, Choi Y et al (2014) Gene and protein sequence optimization for high-level production of fully active and aglycosylated lysostaphin in Pichia pastoris. Appl Environ Microbiol 80:2746–2753. https://doi.org/10.1128/AEM.03914-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li H, Wang S, Zhang Y, Chen L (2018) High-level expression of a thermally stable alginate lyase using Pichia pastoris, characterization and application in producing brown alginate oligosaccharide. Mar Drugs. https://doi.org/10.3390/md16050158

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wang Y, Wang Z, Xu Q et al (2009) Lowering induction temperature for enhanced production of polygalacturonate lyase in recombinant Pichia pastoris. Process Biochem. https://doi.org/10.1016/j.procbio.2009.04.019

    Article  Google Scholar 

  74. Ata Ö, Boy E, Güneş H, Çalik P (2015) Codon optimization of xylA gene for recombinant glucose isomerase production in Pichia pastoris and fed-batch feeding strategies to fine-tune bioreactor performance. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-014-1333-z

    Article  PubMed  Google Scholar 

  75. Shen W, Xue Y, Liu Y et al (2016) A novel methanol-free Pichia pastoris system for recombinant protein expression. Microb Cell Fact. https://doi.org/10.1186/s12934-016-0578-4

    Article  PubMed  PubMed Central  Google Scholar 

  76. Landes N, Gasser B, Vorauer-Uhl K et al (2016) The vitamin-sensitive promoter PTHI11 enables pre-defined autonomous induction of recombinant protein production in Pichia pastoris. Biotechnol Bioeng. https://doi.org/10.1002/bit.26041

    Article  PubMed  Google Scholar 

  77. Wang J, Wang X, Shi L et al (2017) Methanol-independent protein expression by AOX1 promoter with trans-acting elements engineering and glucose-glycerol-shift induction in Pichia pastoris. Sci Rep. https://doi.org/10.1038/srep41850

    Article  PubMed  PubMed Central  Google Scholar 

  78. Menendez J, Valdes I, Cabrera N (2003) The ICLI gene of Pichia pastoris, transcriptional regulation and use of its promoter. Yeast. https://doi.org/10.1002/yea.1028

    Article  PubMed  Google Scholar 

  79. de Macedo Robert J, Garcia-Ortega X, Montesinos-Seguí JL et al (2019) Continuous operation, a realistic alternative to fed-batch fermentation for the production of recombinant lipase B from Candida antarctica under the constitutive promoter PGK in Pichia pastoris. Biochem Eng J. https://doi.org/10.1016/j.bej.2019.03.027

    Article  Google Scholar 

  80. Vadhana AKP, Samuel P, Berin RM et al (2013) Improved secretion of Candida antarctica lipase B with its native signal peptide in Pichia pastoris. Enzyme Microb Technol. https://doi.org/10.1016/j.enzmictec.2013.01.001

    Article  PubMed  Google Scholar 

  81. Lin-Cereghino J, Lin-Cereghino GP (2007) Vectors and strains for expression. Methods Mol Biol 389:11–26

    Article  CAS  Google Scholar 

  82. Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98:5301–5317. https://doi.org/10.1007/s00253-014-5732-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu Q, Shi X, Song L et al (2019) CRISPR-Cas9-mediated genomic multiloci integration in Pichia pastoris. Microb Cell Fact. https://doi.org/10.1186/s12934-019-1194-x

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chauhan AK, Arora D, Khanna N (1999) A novel feeding strategy for enhanced protein production by fed-batch fermentation in recombinant Pichia pastoris. Process Biochem 34:139–145. https://doi.org/10.1016/S0032-9592(98)00080-6

    Article  CAS  Google Scholar 

  85. Kaushik N, Rohila D, Arora U et al (2016) Casamino acids facilitate the secretion of recombinant dengue virus serotype-3 envelope domain III in Pichia pastoris. BMC Biotechnol 16:1–9. https://doi.org/10.1186/s12896-016-0243-3

    Article  CAS  Google Scholar 

  86. Ahmad M, Winkler CM, Kolmbauer M et al (2019) Pichia pastoris protease-deficient and auxotrophic strains generated by a novel, user-friendly vector toolbox for gene deletion. Yeast. https://doi.org/10.1002/yea.3426

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of Enzyme Consultancy and Identification Center (ETDAM) to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barış Binay.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duman-Özdamar, Z.E., Binay, B. Production of Industrial Enzymes via Pichia pastoris as a Cell Factory in Bioreactor: Current Status and Future Aspects. Protein J 40, 367–376 (2021). https://doi.org/10.1007/s10930-021-09968-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-021-09968-7

Keywords

Navigation