Skip to main content

Advertisement

Log in

Fabrication, Characterization and Evaluation of Gallic Acid-Encapsulated Curdlan Gum Nanoparticles with Potential Application for Breast Cancer Treatment

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Curdlan gum (CG) is a β-(1→3)-linked glucan insoluble exopolysaccharide produced by marine bacteria Enterobacter cloacae subsp. dissolvens RSW2n. In this study, CG was used to fabricate gallic acid-encapsulated curdlan gum nanoparticles (GA-CG NPs) for effectively delivering the drug into breast cancer cells (MCF-7) using glutaraldehyde as the crosslinking agent and a modified desolvation method was adopted. The fabricated GA-CG NPs were characterized by UV–Visible spectra, FT-IR, XRD, particle size analyzer and HR-TEM. The stability of GA-CG NPs was evaluated at various pH and simulated body fluids. In vitro drug release and its kinetics were examined through the dissolution mechanism using mathematical prediction models. The encapsulation efficiency and loading capacity of gallic acid was 88.215 ± 3.242% and 8.26 ± 0.021%, respectively. The antioxidant and cytotoxic potential of GA-CG NPs were evaluated through in vitro assays. The IC50 of GA-CG NPs against MCF-7 cells was found to be 16.75 µg × mL−1. The induction of apoptosis in MCF-7 cells was confirmed through flow cytometry. Nuclei condensation, loss of mitochondrial membrane potential, and deformed cell membranes were visualized by staining. Curdlan gum effectively controls the release of gallic acid as the gel matrix slowly degrades and releases the encapsulated gallic acid. Hence, the curdlan gum produced by E. cloacae could be considered as promising candidate for drug delivery application for degenerative disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this manuscript.

References

  1. Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, Vignat J, Gralow JR, Cardoso F, Siesling S (2022) Current and future burden of breast cancer: global statistics for 2020 and 2040. Breast 66:15–23

    Article  PubMed  PubMed Central  Google Scholar 

  2. Anderson BO, Ilbawi AM, Fidarova E, Weiderpass E, Stevens L, Abdel-Wahab M, Mikkelsen B (2021) The global breast cancer initiative: a strategic collaboration to strengthen health care for non-communicable diseases. Lancet Oncol 22(5):578–581

    Article  PubMed  Google Scholar 

  3. Lee EY, Muller WJ (2010) Oncogenes and tumor suppressor genes. Cold Spring Harb Perspect Biol 2(10):a003236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharma GN, Dave R, Sanadya J, Sharma P, Sharma K (2010) Various types and management of breast cancer: an overview. J Adv Pharm Tech Res 1(2):109

    Google Scholar 

  5. Polyak K (2007) Breast cancer: origins and evolution. J Clin Investig 117(11):3155–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tagde P, Najda A, Nagpal K, Kulkarni GT, Shah M, Ullah O, Balant S, Rahman MH (2022) Nanomedicine-based delivery strategies for breast cancer treatment and management. Int J Mol Sci 23(5):2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, Hess KR, Stec J, Ayers M, Wagner P (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11(16):5678–5685

    Article  CAS  PubMed  Google Scholar 

  8. Lumachi F, Luisetto G, Mm Basso S, Basso U, Brunello A, Camozzi V (2011) Endocrine therapy of breast cancer. Curr Med Chem 18(4):513–522

    Article  CAS  PubMed  Google Scholar 

  9. Liu X, Chen Y, Li H, Huang N, Jin Q, Ren K, Ji J (2013) Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior. ACS Nano 7(7):6244–6257

    Article  CAS  PubMed  Google Scholar 

  10. Zhang H, Hu H, Zhang H, Dai W, Wang X, Wang X, Zhang Q (2015) Effects of PEGylated paclitaxel nanocrystals on Breast cancer and its lung Metastasis. Nanoscale 7(24):10790–10800

    Article  CAS  PubMed  Google Scholar 

  11. Al Ali SHH, Al-Qubaisi M, Hussein MZ, Ismail M, Zainal Z, Hakim MN (2012) Controlled release and angiotensin-converting enzyme inhibition properties of an antihypertensive drug based on a perindopril erbumine-layered double hydroxide nanocomposite. Int J Nanomed. https://doi.org/10.2147/IJN.S30461

    Article  Google Scholar 

  12. Upadhyay RK (2014) Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res Int. https://doi.org/10.1155/2014/869269

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shenoy DB, Amiji MM (2005) Poly (ethylene oxide)-modified poly (ɛ-caprolactone) nanoparticles for targeted delivery of tamoxifen in Breast cancer. Int J Pharm 293(1–2):261–270

    Article  CAS  PubMed  Google Scholar 

  14. Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P (2013) Biocompatibility of engineered nanoparticles for drug delivery. J Controlled Release 166(2):182–194

    Article  CAS  Google Scholar 

  15. Lee JW, Park JH, Robinson JR (2000) Bioadhesive-based dosage forms: the next generation. J Pharm Sci 89(7):850–866

    Article  CAS  PubMed  Google Scholar 

  16. Harada T, Fujimori K, Hirose S, Masada M (1966) Growth and β-glucan 10C3K production by a mutant of Alcaligenes faecalis var. Myxogenes in defined medium. Agric Biol Chem 30(8):764–769

    Article  CAS  Google Scholar 

  17. Liang Y, Qu Z, Liu M, Wang J, Zhu M, Liu Z, Li J, Zhan X, Jia F (2020) Effect of curdlan on the quality of frozen-cooked noodles during frozen storage. J Cereal Sci 95:103019

    Article  CAS  Google Scholar 

  18. Na K, Park K-H, Kim SW, Bae YH (2000) Self-assembled hydrogel nanoparticles from curdlan derivatives: characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2). J Controll Release 69(2):225–236

    Article  CAS  Google Scholar 

  19. D’Souza S, Du Plessis S, Egieyeh S, Bekale R, Maphasa R, Irabin A, Sampson S, Dube A (2022) Physicochemical and biological evaluation of curdlan-poly (lactic-co-glycolic acid) nanoparticles as a host-directed therapy against Mycobacterium tuberculosis. J Pharm Sci 111(2):469–478

    Article  PubMed  Google Scholar 

  20. Tukulula M, Hayeshi R, Fonteh P, Meyer D, Ndamase A, Madziva MT, Khumalo V, Lubuschagne P, Naicker B, Swai H (2015) Curdlan-conjugated PLGA nanoparticles possess macrophage stimulant activity and drug delivery capabilities. Pharm Res 32:2713–2726

    Article  CAS  PubMed  Google Scholar 

  21. Gurav YA, Sayyad FJ (2019) Design of regioselective drug delivery system of lamotrigine using curdlan gum. Pharma Innov 8(4):88–93

    CAS  Google Scholar 

  22. Peng C-C, Hsieh C-L, Wang H-E, Chung J-Y, Chen K-C, Peng RY (2012) Ferulic acid is nephrodamaging while gallic acid is renal protective in long term treatment of chronic Kidney Disease. Clin Nutr 31(3):405–414

    Article  CAS  PubMed  Google Scholar 

  23. Arsianti A, Bahtiar A, Fadilah F, Wangsaputra VK, Paramita RI, Azizah NN, Nadapdap LD, Fajrin AM, Tanimoto H, Kakiuchi K (2020) Synthesis, characterization, and cytotoxicity evaluation of gallic acid nanoparticles towards breast T47D cancer cells. Pharmacogn J. https://doi.org/10.5530/pj.2020.12.51

    Article  Google Scholar 

  24. Shivakumar S, Vijayendra S (2006) Production of exopolysaccharides by Agrobacterium sp. CFR-24 using coconut water–a byproduct of food industry. Lett Appl Microbiol 42(5):477–482

    Article  CAS  PubMed  Google Scholar 

  25. Lee IY, Seo WT, Kim GJ, Kim MK, Park C, Park YH (1997) Production of curdlan using sucrose or sugar cane molasses by two-step fed-batch cultivation of Agrobacterium species. J Ind Microbiol Biotechnol 18(4):255–259

    Article  CAS  Google Scholar 

  26. Pietrzyńska M, Voelkel A (2017) Stability of simulated body fluids such as blood plasma, artificial urine and artificial saliva. Microchem J 134:197–201

    Article  Google Scholar 

  27. Tan B-J, Liu Y, Chang K-L, Lim BK, Chiu GN (2012) Perorally active nanomicellar formulation of quercetin in the treatment of lung cancer. Int J Nanomed. https://doi.org/10.2147/IJN.S26538

    Article  Google Scholar 

  28. Lazzari S, Moscatelli D, Codari F, Salmona M, Morbidelli M, Diomede L (2012) Colloidal stability of polymeric nanoparticles in biological fluids. J Nanopart Res 14:1–10

    Article  Google Scholar 

  29. Kunjiappan S, Panneerselvam T, Somasundaram B, Arunachalam S, Sankaranarayanan M, Parasuraman P (2018) Preparation of liposomes encapsulated epirubicin-gold nanoparticles for Tumor specific delivery and release. Biomedical Phys Eng Express 4(4):045027

    Article  Google Scholar 

  30. Bruschi ML (2015) Strategies to modify the drug release from pharmaceutical systems. Woodhead Publishing, Sawston

    Google Scholar 

  31. Ghagane SC, Puranik SI, Kumbar VM, Nerli RB, Jalalpure SS, Hiremath MB, Neelagund S, Aladakatti R (2017) In vitro antioxidant and anticancer activity of Leea indica leaf extracts on human Prostate cancer cell lines. Integr Med Res 6(1):79–87

    Article  PubMed  PubMed Central  Google Scholar 

  32. Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53(10):4290–4302

    Article  CAS  PubMed  Google Scholar 

  33. Chowdhury A, Panneerselvam T, Suthendran K, Bhattachejee C, Balasubramanian S, Murugesan S, Suraj B, Selvaraj K (2018) Optimization of microwave-assisted extraction of bioactive polyphenolic compounds from Marsilea quadrifolia L. using RSM and ANFIS modelling. NIScPR Online Period Repos 9:204–221

    CAS  Google Scholar 

  34. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662

    Article  CAS  Google Scholar 

  35. Kalimuthu AK, Parasuraman P, Sivakumar P, Murugesan S, Arunachalam S, Pandian SRK, Ravishankar V, Ammunje DN, Sampath M, Panneerselvam T (2022) In silico, in vitro screening of antioxidant and anticancer potentials of bioactive secondary metabolites from an endophytic fungus (Curvularia sp.) from Phyllanthus niruri L. Environ Sci Pollut Res 29(32):48908–48925

    Article  CAS  Google Scholar 

  36. Koopman G, Reutelingsperger C, Kuijten G, Keehnen R, Pals S, Van Oers M (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood. https://doi.org/10.1182/blood.V84.5.1415.1415

    Article  PubMed  Google Scholar 

  37. Kunjiappan S, Sankaranarayanan M, Kumar BK, Pavadai P, Babkiewicz E, Maszczyk P, Glodkowska-Mrowka E, Arunachalam S, Pandian SRK, Ravishankar V (2020) Capsaicin-loaded solid lipid nanoparticles: design, biodistribution, in silico modeling and in vitro cytotoxicity evaluation. Nanotechnology 32(9):095101

    Article  Google Scholar 

  38. Mohan UP, Sriram B, Panneerselvam T, Devaraj S, MubarakAli D, Parasuraman P, Palanisamy P, Premanand A, Arunachalam S, Kunjiappan S (2020) Utilization of plant-derived myricetin molecule coupled with ultrasound for the synthesis of gold nanoparticles against Breast cancer. Naunyn Schmiedebergs Arch Pharmacol 393:1963–1976

    Article  CAS  PubMed  Google Scholar 

  39. Mallikarjuna K, Sushma NJ, Narasimha G, Manoj L, Raju BDP (2014) Phytochemical fabrication and characterization of silver nanoparticles by using Pepper leaf broth. Arab J Chem 7(6):1099–1103

    Article  CAS  Google Scholar 

  40. Chaudhari V, Buttar HS, Bagwe-Parab S, Tuli HS, Vora A, Kaur G (2021) Therapeutic and industrial applications of curdlan with overview on its recent patents. Front Nutr 8:646988

    Article  PubMed  PubMed Central  Google Scholar 

  41. Siepmann J, Peppas NA (2011) Higuchi equation: derivation, applications, use and misuse. Int J Pharm 418(1):6–12

    Article  CAS  PubMed  Google Scholar 

  42. Vistica DT, Skehan P, Scudiero D, Monks A, Pittman A, Boyd MR (1991) Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res 51(10):2515–2520

    CAS  PubMed  Google Scholar 

  43. Zeng Y, Xiang Y, Sheng R, Tomás H, Rodrigues J, Gu Z, Zhang H, Gong Q, Luo K (2021) Polysaccharide-based nanomedicines for cancer immunotherapy: a review. Bioactive Mater 6(10):3358–3382

    Article  CAS  Google Scholar 

  44. Ganguly K, Chaturvedi K, More UA, Nadagouda MN, Aminabhavi TM (2014) Polysaccharide-based micro/nanohydrogels for delivering macromolecular therapeutics. J Controlled Release 193:162–173

    Article  CAS  Google Scholar 

  45. Yang L, Wang P, Wang H, Li Q, Teng H, Liu Z, Yang W, Hou L, Zou X (2013) Fucoidan derived from Undaria pinnatifida induces apoptosis in human hepatocellular carcinoma SMMC-7721 cells via the ROS-mediated mitochondrial pathway. Mar Drugs 11(6):1961–1976

    Article  PubMed  PubMed Central  Google Scholar 

  46. Buschmann MD, Merzouki A, Lavertu M, Thibault M, Jean M, Darras V (2013) Chitosans for delivery of nucleic acids. Adv Drug Deliv Rev 65(9):1234–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nasrollahi Z, Mohammadi SR, Mollarazi E, Yadegari MH, Hassan ZM, Talaei F, Dinarvand R, Akbari H, Atyabi F (2015) Functionalized nanoscale β-1, 3-glucan to improve Her2+ breast cancer therapy: in vitro and in vivo study. J Controll Release 202:49–56

    Article  CAS  Google Scholar 

  48. Desagher S, Martinou J-C (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10(9):369–377

    Article  CAS  PubMed  Google Scholar 

  49. Malhotra S, Dumoga S, Joshi A, Mohanty S, Singh N (2021) Polymeric micelles coated with hybrid nanovesicles enhance the therapeutic potential of the reversible topoisomerase inhibitor camptothecin in a mouse model. Acta Biomater 121:579–591

    Article  CAS  PubMed  Google Scholar 

  50. Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    Article  CAS  PubMed  Google Scholar 

  51. Brown RS, Wahl RL (1993) Overexpression of glut-1 glucose transporter in human Breast cancer an immunohistochemical study. Cancer 72(10):2979–2985

    Article  CAS  PubMed  Google Scholar 

  52. Zamora-León SP, Golde DW, Concha II, Rivas CI, Delgado-López F, Baselga J, Nualart F, Vera JC (1996) Expression of the fructose transporter GLUT5 in human breast cancer. Proc Natl Acad Sci 93(5):1847–1852

    Article  PubMed  PubMed Central  Google Scholar 

  53. Godwin AK, Lieberman MW (1991) Elevation of glucose transporter, c-myc, and transin RNA levels by Ha‐rasT24 is Independent of its effect on the cell cycle. Mol Carcinog 4(4):275–285

    Article  CAS  PubMed  Google Scholar 

  54. Waseem M, Wang B-D (2023) Promising strategy of mPTP modulation in Cancer Therapy: an emerging progress and future insight. Int J Mol Sci 24(6):5564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Al-Hayali M, Garces A, Stocks M, Collins H, Bradshaw TD (2021) Concurrent reactive oxygen species generation and aneuploidy induction contribute to thymoquinone anticancer activity. Molecules 26(17):5136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang K, Zhu X, Zhang K, Zhu L, Zhou F (2014) Investigation of gallic acid induced anticancer effect in human breast carcinoma MCF-7 cells. J Biochem Mol Toxicol 28(9):387–393

    Article  CAS  PubMed  Google Scholar 

  57. Hu W, Feng Z, Levine AJ (2012) The regulation of multiple p53 stress responses is mediated through MDM2. Genes Cancer 3(3–4):199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kalimuthu AK, Pandian SRK, Pavadai P, Panneerselvam T, Kabilan SJ, Sankaranarayanan M, Ala C, Kunjiappan S (2023) Drug delivery applications of exopolysaccharides from endophytic bacteria Pseudomonas otitidis from Tribulus terrestris L. J Polym Environ. https://doi.org/10.1007/s10924-023-02848-4

    Article  Google Scholar 

  59. Sun L, Chen Y, Zhou Y, Guo D, Fan Y, Guo F, Zheng Y, Chen W (2017) Preparation of 5-fluorouracil-loaded chitosan nanoparticles and study of the sustained release in vitro and in vivo. Asian J Pharm Sci 12(5):418–423

    Article  PubMed  PubMed Central  Google Scholar 

  60. Spizzirri UG, Iemma F, Puoci F, Cirillo G, Curcio M, Parisi OI, Picci N (2009) Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromolecules 10(7):1923–1930

    Article  CAS  PubMed  Google Scholar 

  61. Hassani A, Azarian MMS, Ibrahim WN, Hussain SA (2020) Preparation, characterization and therapeutic properties of gum arabic-stabilized gallic acid nanoparticles. Sci Rep 10(1):17808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by International Research Centre, Kalasalingam Academy of Research and Education for material characterization facilities like UV–Visible spectroscopy, FT-IR spectrophotometer and XRD. The authors would like to acknowledge the support of the Sophisticated Test and Instrumentation Centre (STIC), Cochin University, Kerala, India for TEM analysis.

Funding

This work was supported by the seed money grant from management of Kalasalingam Academy of Research and Education (Grant number: KARE/VC/R&D/SMPG/2023-2024/01). The University Research Fellowship provided by the management of Kalasalingam Academy of Research and Education to Mrs. Ezhilarasi is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

VB supervision, fund acquisition, project administration, resources, writing review and editing; EP, BFP, SK, KS writing-original draft, formal analysis, investigation; VB, EP conceptualization, writing, investigation and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Vanavil Balakrishnan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical Approval

Ethical approval was not required for this research.

Consent to Participate

Not applicable.

Consent for Publication

The authors give the consent for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandi, E., Proskhan, B.F., Kunjiappan, S. et al. Fabrication, Characterization and Evaluation of Gallic Acid-Encapsulated Curdlan Gum Nanoparticles with Potential Application for Breast Cancer Treatment. J Polym Environ (2024). https://doi.org/10.1007/s10924-023-03139-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03139-8

Keywords

Navigation