Skip to main content

Advertisement

Log in

Nano-fluorcanasite-fluorapatite Reinforced Poly-ε-caprolactone Based Biomimetic Scaffold: A Synergistic Approach Towards Generation of Conducive Environment for Cell Survival

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This paper reports the development of bioactive fluorcanasite-fluorapatite nanoparticle (nFC-FAp) reinforced poly-(ε-caprolactone) (PCL) bio-nanocomposite bone scaffolds using a biomimetic approach. The filler-matrix combination was selected in particular, to facilitate biomineralization, tunable degradation and augmented cellular response. A novel hybrid technique was adopted to generate hierarchical porosity within the bone scaffolds to match the porous architecture of natural bone. The in-house synthesized nanostructured FC-FAp demonstrated presence of fluorcanasite and fluorapatite biominerals, conducive phases for bone formation. Fourier transform-infrared spectroscopy analysis of PCL/nFC-FAp scaffolds indicated interfacial compatibility between PCL matrix and nFC-FAp reinforcement. Microstructural analysis of scaffolds through field emission-scanning electron microscopy confirmed generation of interconnected hierarchical gradient porosity, while, synchrotron-based X-ray micro-computed tomography study revealed three-dimensional architectural details of the scaffolds, with anticipated favorable cellular environment for bone cell activities. Investigations of density and overall porosity of the scaffolds revealed that although, apparent densities increased with increasing loading of nFC-FAp, the variation in relative density and overall porosity values were minimal, establishing the efficacy of hybrid biofabrication approach. Water contact angle results indicated enhanced hydrophilic nature (surface wettability) of the bio-nanocomposite bone scaffolds, a conducive environment for enhanced cellular response. In-vitro biodegradation studies indicated tunable degradation and permissible pH stability of scaffolds with incorporation of nFC-FAp reinforcement. In-vitro biocompatibility studies based on MTT assay and fluorescence microscopy further established enhanced cell survival, viability, and proliferation with osteosarcoma bone cells. Overall, this study highlights a promising bioinspired strategy to develop composite bone scaffolds towards expedited repair of bone damages.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733. https://doi.org/10.1007/s00198-006-0172-4

    Article  CAS  PubMed  Google Scholar 

  2. Fuleihan GE, Chakhtoura M, Cauley JA, Chamoun N (2017) Worldwide fracture prediction. J Clin Densitom 20:397–424. https://doi.org/10.1016/j.jocd.2017.06.008

    Article  Google Scholar 

  3. Boccaccini AR, Maquet V (2003) Bioresorbable and bioactive polymer/Bioglass® composites with tailored pore structure for tissue engineering applications. Compos Sci Technol 63:2417–2429. https://doi.org/10.1016/S0266-3538(03)00275-6

    Article  CAS  Google Scholar 

  4. Mulherin D, Williams S, Smith JA et al (2003) Identification of risk factors for future fracture in patients following distal forearm fracture. Osteoporos Int 14:757–760. https://doi.org/10.1007/s00198-003-1441-0

    Article  CAS  PubMed  Google Scholar 

  5. Boltz MM, Podany AB, Hollenbeak CS, Armen SB (2015) Injuries and outcomes associated with traumatic falls in the elderly population on oral anticoagulant therapy. Injury 46:1765–1771. https://doi.org/10.1016/j.injury.2015.06.013

    Article  PubMed  Google Scholar 

  6. Kashte S, Jaiswal AK, Kadam S (2017) Artificial bone via bone tissue engineering: current scenario and challenges. Tissue Eng Regen Med 14:1–14. https://doi.org/10.1007/s13770-016-0001-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tavakkoli Avval P, Samiezadeh S, Klika V, Bougherara H (2015) Investigating stress shielding spanned by biomimetic polymer-composite vs. metallic hip stem: a computational study using mechano-biochemical model. J Mech Behav Biomed Mater 41:56–67. https://doi.org/10.1016/j.jmbbm.2014.09.019

    Article  CAS  PubMed  Google Scholar 

  8. Garimella A, Ghosh SB, Bandyopadhyay-Ghosh S (2022) Bioactive fluorcanasite reinforced magnesium alloy based porous bio-nanocomposite bone scaffold with controlled degradation. Mater Technol. https://doi.org/10.1080/10667857.2022.2076047

    Article  Google Scholar 

  9. Brunski JB (1992) Biomechanical factors affecting the bone-dental implant interface. Clin Mater 10:153–201. https://doi.org/10.1016/0267-6605(92)90049-Y

    Article  CAS  PubMed  Google Scholar 

  10. Asghari F, Samiei M, Adibkia K et al (2017) Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif Cells Nanomed Biotechnol 45:185–192. https://doi.org/10.3109/21691401.2016.1146731

    Article  CAS  PubMed  Google Scholar 

  11. Gunatillake PA, Adhikari R, Gadegaard N (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cells Mater 5:1–16. https://doi.org/10.22203/eCM.v005a01

    Article  CAS  Google Scholar 

  12. Kumawat VS, Bandyopadhyay-Ghosh S, Ghosh SB (2022) An overview of translational research in bone graft biomaterials. J Biomater Sci Polym Ed. https://doi.org/10.1080/09205063.2022.2127143

    Article  PubMed  Google Scholar 

  13. Kumawat VS, Ghosh SB, Bandyopadhyay-Ghosh S (2019) Microporous biocomposite scaffolds with tunable degradation and interconnected microarchitecture-A synergistic integration of bioactive chain silicate glass-ceramic and poly(ε-caprolactone). Polym Degrad Stab 165:20–26. https://doi.org/10.1016/j.polymdegradstab.2019.04.017

    Article  CAS  Google Scholar 

  14. Phogat K, Kanwar S, Nayak D et al (2020) Nano-enabled poly(vinyl alcohol) based injectable bio-nanocomposite hydrogel scaffolds. J Appl Polym Sci 137:48789. https://doi.org/10.1002/app.48789

    Article  CAS  Google Scholar 

  15. Xiao Y, Yuan M, Zhang J et al (2014) Functional poly(ε-caprolactone) based materials: preparation, self-assembly and application in drug delivery. Curr Top Med Chem 14:781–818. https://doi.org/10.2174/1568026614666140118222820

    Article  CAS  PubMed  Google Scholar 

  16. Kapoor B, Bhattacharya M (1999) Transient shear and extensional properties of biodegradable polycaprolactone. Polym Eng Sci 39:676–687. https://doi.org/10.1002/pen.11456

    Article  CAS  Google Scholar 

  17. Kumawat VS, Bandyopadhyay-Ghosh S, Ghosh SB (2023) Rationally designed biomimetic bone scaffolds with hierarchical porous-architecture: microstructure and mechanical performance. Express Polym Lett 17:610–624. https://doi.org/10.3144/expresspolymlett.2023.45

    Article  CAS  Google Scholar 

  18. Zhang F, Chang J, Lu J et al (2007) Bioinspired structure of bioceramics for bone regeneration in load-bearing sites. Acta Biomater 3:896–904. https://doi.org/10.1016/j.actbio.2007.05.008

    Article  CAS  PubMed  Google Scholar 

  19. Wei G, Ma PX (2004) Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25:4749–4757. https://doi.org/10.1016/j.biomaterials.2003.12.005

    Article  CAS  PubMed  Google Scholar 

  20. Gao P, Zhang H, Liu Y et al (2016) Beta-tricalcium phosphate granules improve osteogenesis in vitro and establish innovative osteo-regenerators for bone tissue engineering in vivo. Sci Rep 6:1–14. https://doi.org/10.1038/srep23367

    Article  CAS  Google Scholar 

  21. Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7:2769–2781. https://doi.org/10.1016/j.actbio.2011.03.019

    Article  CAS  PubMed  Google Scholar 

  22. Bandyopadhyay-Ghosh S, Reaney IM, Johnson A et al (2008) The effect of investment materials on the surface of cast fluorcanasite glasses and glass–ceramics. J Mater Sci Mater Med 19:839–846. https://doi.org/10.1007/s10856-007-3207-2

    Article  CAS  PubMed  Google Scholar 

  23. Tulyaganov DU, Fiume E, Akbarov A et al (2022) In vivo evaluation of 3D-printed silica-based bioactive glass scaffolds for bone regeneration. J Funct Biomater 13:74. https://doi.org/10.3390/jfb13020074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghosh S, Webster TJ (2021) Mesoporous silica based nanostructures for bone tissue regeneration. Front Mater 8:213. https://doi.org/10.3389/FMATS.2021.692309/BIBTEX

    Article  Google Scholar 

  25. Zhou X, Zhang N, Mankoci S, Sahai N (2017) Silicates in orthopedics and bone tissue engineering materials. J Biomed Mater Res Part A 105:2090–2102. https://doi.org/10.1002/JBM.A.36061

    Article  CAS  Google Scholar 

  26. Gao C, Peng S, Feng P (2017) Shuai C (2017) Bone biomaterials and interactions with stem cells. Bone Res 51(5):1–33. https://doi.org/10.1038/boneres.2017.59

    Article  CAS  Google Scholar 

  27. Beall GH (1991) Chain silicate glass-ceramics. J Non Cryst Solids 129:163–173. https://doi.org/10.1016/0022-3093(91)90092-K

    Article  CAS  Google Scholar 

  28. Miller CA, Kokubo T, Reaney IM et al (2001) Formation of apatite layers on modified canasite glass–ceramics in simulated body fluid. J Biomed Mater Res 59:473–480. https://doi.org/10.1002/jbm.10018

    Article  CAS  Google Scholar 

  29. Mirsaneh M, Reaney IM, Hatton PV, James PF (2004) Characterization of high-fracture toughness K-fluorrichterite-fluorapatite glass ceramics. J Am Ceram Soc 87:240–246. https://doi.org/10.1111/j.1551-2916.2004.00240.x

    Article  Google Scholar 

  30. Clifford A, Hill R (1996) Apatite-mullite glass-ceramics. J Non Cryst Solids 196:346–351. https://doi.org/10.1016/0022-3093(95)00611-7

    Article  CAS  Google Scholar 

  31. Bandyopadhyay-Ghosh S, Reaney IM, Brook IM et al (2007) In vitro biocompatibility of fluorcanasite glass-ceramics for bone tissue repair. J Biomed Mater Res Part A 80A:175–183. https://doi.org/10.1002/jbm.a.30878

    Article  CAS  Google Scholar 

  32. Bandyopadhyay-Ghosh S, Faria PEP, Johnson A et al (2010) Osteoconductivity of modified fluorcanasite glass-ceramics for bone tissue augmentation and repair. J Biomed Mater Res - Part A 94:760–768. https://doi.org/10.1002/jbm.a.32750

    Article  CAS  Google Scholar 

  33. Kumawat VS, Vyas A, Bandyopadhyay-Ghosh S, Ghosh SB (2020) Selectively modified nanostructured fluorcanasite glass-ceramic with enhanced micromechanical properties. J Non Cryst Solids 547:120303. https://doi.org/10.1016/j.jnoncrysol.2020.120303

    Article  CAS  Google Scholar 

  34. Vyas A, Kumawat VS, Ghosh SB, Bandyopadhyay-Ghosh S (2020) Microstructural analysis and bioactive response of selectively engineered glass-ceramics in simulated body fluid. Mater Technol 00:1–9. https://doi.org/10.1080/10667857.2020.1774208

    Article  CAS  Google Scholar 

  35. Gupta HS, Wagermaier W, Zickler GA et al (2005) Nanoscale deformation mechanisms in bone. Nano Lett 5:2108–2111. https://doi.org/10.1021/nl051584b

    Article  CAS  PubMed  Google Scholar 

  36. Yu X, Tang X, Gohil SV, Laurencin CT (2015) Biomaterials for bone regenerative engineering. Adv Healthc Mater 4:1268–1285. https://doi.org/10.1002/adhm.201400760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tang W, Lin D, Yu Y et al (2016) Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect. Acta Biomater 32:309–323. https://doi.org/10.1016/J.ACTBIO.2015.12.006

    Article  CAS  PubMed  Google Scholar 

  38. Zhu L, Luo D, Liu Y (2020) Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int J Oral Sci 121(12):1–15. https://doi.org/10.1038/s41368-020-0073-y

    Article  CAS  Google Scholar 

  39. Yoo D (2013) New paradigms in hierarchical porous scaffold design for tissue engineering. Mater Sci Eng C 33:1759–1772. https://doi.org/10.1016/j.msec.2012.12.092

    Article  CAS  Google Scholar 

  40. García A, Izquierdo-Barba I, Colilla M et al (2011) Preparation of 3-D scaffolds in the SiO2-P2O5 system with tailored hierarchical meso-macroporosity. Acta Biomater 7:1265–1273. https://doi.org/10.1016/j.actbio.2010.10.006

    Article  CAS  PubMed  Google Scholar 

  41. Bignon A, Chouteau J, Chevalier J et al (2003) Effect of micro- and macroporosity of bone substitutes on their mechanical properties and cellular response. J Mater Sci Mater Med 14:1089–1097. https://doi.org/10.1023/B:JMSM.0000004006.90399.b4

    Article  CAS  PubMed  Google Scholar 

  42. Cicuéndez M, Malmsten M, Doadrio JC et al (2014) Tailoring hierarchical meso-macroporous 3D scaffolds: from nano to macro. J Mater Chem B 2:49–58. https://doi.org/10.1039/c3tb21307b

    Article  CAS  PubMed  Google Scholar 

  43. Alizadeh-Osgouei M, Li Y, Wen C (2019) A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioact Mater 4:22–36. https://doi.org/10.1016/j.bioactmat.2018.11.003

    Article  PubMed  Google Scholar 

  44. Nga NK, Thanh Tam LT, Ha NT et al (2020) Enhanced biomineralization and protein adsorption capacity of 3D chitosan/hydroxyapatite biomimetic scaffolds applied for bone-tissue engineering. RSC Adv 10:43045–43057. https://doi.org/10.1039/D0RA09432C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ramanathan G, Jeyakumar GFS, Sivagnanam UT, Fardim P (2023) Biomimetic cellulose/collagen/silk fibroin as a highly interconnected 3D hybrid matrix for bone tissue engineering. Process Biochem 129:150–158. https://doi.org/10.1016/J.PROCBIO.2023.03.018

    Article  CAS  Google Scholar 

  46. Hoai TT, Nga NK (2018) Effect of pore architecture on osteoblast adhesion and proliferation on hydroxyapatite/poly(D, L) lactic acid-based bone scaffolds. J Iran Chem Soc 15:1663–1671. https://doi.org/10.1007/S13738-018-1365-4/METRICS

    Article  CAS  Google Scholar 

  47. Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cells Mater 5:29–40. https://doi.org/10.22203/eCM.v005a03

    Article  CAS  Google Scholar 

  48. Peltola SM, Melchels FPW, Grijpma DW, Kellomäki M (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40:268–280. https://doi.org/10.1080/07853890701881788

    Article  CAS  PubMed  Google Scholar 

  49. Hutmacher DW, Schantz T, Zein I et al (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55:203–216. https://doi.org/10.1002/1097-4636(200105)55:2%3c203::AID-JBM1007%3e3.0.CO;2-7

    Article  CAS  PubMed  Google Scholar 

  50. Durgun I, Ertan R (2014) Experimental investigation of FDM process for improvement of mechanical properties and production cost. Rapid Prototyp J 20:228–235. https://doi.org/10.1108/RPJ-10-2012-0091

    Article  Google Scholar 

  51. Yeong WY, Chua CK, Leong KF, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22:643–652. https://doi.org/10.1016/j.tibtech.2004.10.004

    Article  CAS  PubMed  Google Scholar 

  52. Boparai KS, Singh R, Singh H (2016) Development of rapid tooling using fused deposition modeling: a review. Rapid Prototyp J 22:281–299. https://doi.org/10.1108/RPJ-04-2014-0048

    Article  Google Scholar 

  53. Giannitelli SM, Mozetic P, Trombetta M, Rainer A (2015) Combined additive manufacturing approaches in tissue engineering. Acta Biomater 24:1–11. https://doi.org/10.1016/j.actbio.2015.06.032

    Article  CAS  PubMed  Google Scholar 

  54. Mi HY, Jing X, McNulty J et al (2016) Approaches to fabricating multiple-layered vascular scaffolds using hybrid electrospinning and thermally induced phase separation methods. Ind Eng Chem Res 55:882–892. https://doi.org/10.1021/acs.iecr.5b03462

    Article  CAS  Google Scholar 

  55. Zhou C, Yang K, Wang K et al (2016) Combination of fused deposition modeling and gas foaming technique to fabricated hierarchical macro/microporous polymer scaffolds. Mater Des 109:415–424. https://doi.org/10.1016/j.matdes.2016.07.094

    Article  CAS  Google Scholar 

  56. Okada K, Nandi M, Maruyama J et al (2011) Fabrication of mesoporous polymer monolith: a template-free approach. Chem Commun 47:7422–7424. https://doi.org/10.1039/c1cc12402a

    Article  CAS  Google Scholar 

  57. Kanwar S, Al-Ketan O, Vijayavenkataraman S (2022) A novel method to design biomimetic, 3D printable stochastic scaffolds with controlled porosity for bone tissue engineering. Mater Des 220:110857. https://doi.org/10.1016/J.MATDES.2022.110857

    Article  CAS  Google Scholar 

  58. Kanchanarat N, Bandyopadhyay-Ghosh S, Reaney IM et al (2008) Microstructure and mechanical properties of fluorcanasite glass-ceramics for biomedical applications. J Mater Sci 43:759–765. https://doi.org/10.1007/s10853-007-2180-y

    Article  CAS  Google Scholar 

  59. Brauer DS, Karpukhina N, O’Donnell MD et al (2010) Fluoride-containing bioactive glasses: effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid. Acta Biomater 6:3275–3282. https://doi.org/10.1016/j.actbio.2010.01.043

    Article  CAS  PubMed  Google Scholar 

  60. Altaie A, Bubb N, Franklin P et al (2020) Development and characterisation of dental composites containing anisotropic fluorapatite bundles and rods. Dent Mater 36:1071–1085. https://doi.org/10.1016/J.DENTAL.2020.05.003

    Article  CAS  PubMed  Google Scholar 

  61. Rahmati M, Mozafari M (2020) Selective contribution of bioactive glasses to molecular and cellular pathways. ACS Biomater Sci Eng 6:4–20. https://doi.org/10.1021/ACSBIOMATERIALS.8B01078/ASSET/IMAGES/MEDIUM/AB-2018-01078E_0009.GIF

    Article  CAS  PubMed  Google Scholar 

  62. Kazimierczak P, Wessely-Szponder J, Palka K et al (2023) Hydroxyapatite or fluorapatite—which bioceramic is better as a base for the production of bone scaffold?—A comprehensive comparative study. Int J Mol Sci 24:5576. https://doi.org/10.3390/ijms24065576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cacciotti I (2017) Bivalent cationic ions doped bioactive glasses: the influence of magnesium, zinc, strontium and copper on the physical and biological properties. J Mater Sci 52:8812–8831. https://doi.org/10.1007/s10853-017-1010-0

    Article  CAS  Google Scholar 

  64. Islam MT, Felfel RM, Neel EAA et al (2017) Bioactive calcium phosphate–based glasses and ceramics and their biomedical applications: a review. J Tissue Eng 8:2014. https://doi.org/10.1177/2041731417719170

    Article  CAS  Google Scholar 

  65. Elzein T, Nasser-eddine M, Delaite C et al (2004) FTIR study of polycaprolactone chain organization at interfaces. J Colloid Interface Sci 273:381–387. https://doi.org/10.1016/j.jcis.2004.02.001

    Article  CAS  PubMed  Google Scholar 

  66. Hanna R (1965) Infrared absorption spectrum of silicon dioxide. J Am Ceram Soc 48:595–599. https://doi.org/10.1111/j.1151-2916.1965.tb14680.x

    Article  CAS  Google Scholar 

  67. Palard M, Champion E, Foucaud S (2008) Synthesis of silicated hydroxyapatite Ca10(PO4), 6–x(SiO4)x(OH)2–x. J Solid State Chem 181:1950–1960. https://doi.org/10.1016/j.jssc.2008.04.027

    Article  CAS  Google Scholar 

  68. Gibson IR, Best SM, Bonfield W (1999) Chemical characterization of silicon-substituted hydroxyapatite. J Biomed Mater Res 44:422–428. https://doi.org/10.1002/(sici)1097-4636(19990315)44:4%3C422::aid-jbm8%3E3.0.co;2-#

    Article  CAS  PubMed  Google Scholar 

  69. Kim C, Clark AE, Hench LL (1989) Early stages of calcium-phosphate layer formation in bioglasses. J Non Cryst Solids 113:195–202. https://doi.org/10.1016/0022-3093(89)90011-2

    Article  CAS  Google Scholar 

  70. Rey C, Shimizu M, Collins B, Glimcher MJ (1991) Resolution-enhanced fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in thev 3 PO4 domain. Calcif Tissue Int 49:383–388. https://doi.org/10.1007/BF02555847

    Article  CAS  PubMed  Google Scholar 

  71. Verma D, Katti K, Katti D (2006) Experimental investigation of interfaces in hydroxyapatite/polyacrylic acid/polycaprolactone composites using photoacoustic FTIR spectroscopy. J Biomed Mater Res—Part A 77:59–66. https://doi.org/10.1002/jbm.a.30592

    Article  CAS  Google Scholar 

  72. Fairag R, Rosenzweig DH, Ramirez-Garcialuna JL et al (2019) Three-dimensional printed polylactic acid scaffolds promote bone-like matrix deposition in vitro. ACS Appl Mater Interfaces 11:15306–15315. https://doi.org/10.1021/ACSAMI.9B02502/ASSET/IMAGES/MEDIUM/AM-2019-02502U_0006.GIF

    Article  CAS  PubMed  Google Scholar 

  73. Shen M, Wang L, Gao Y et al (2022) 3D bioprinting of in situ vascularized tissue engineered bone for repairing large segmental bone defects. Mater Today Bio 16:100382. https://doi.org/10.1016/J.MTBIO.2022.100382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu Y, Yang S, Cao L et al (2020) Facilitated vascularization and enhanced bone regeneration by manipulation hierarchical pore structure of scaffolds. Mater Sci Eng C 110:110622. https://doi.org/10.1016/j.msec.2019.110622

    Article  CAS  Google Scholar 

  75. Chen X, Liu Y, Liu H et al (2023) Bioactive bone scaffolds manufactured by 3D printing and sacrificial templating of poly(ε-caprolactone) composites as filler for bone tissue engineering. J Mater Sci 58:5444–5455. https://doi.org/10.1007/S10853-023-08319-4/METRICS

    Article  CAS  Google Scholar 

  76. Wang Y, Liu L, Guo S (2010) Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro. Polym Degrad Stab 95:207–213. https://doi.org/10.1016/j.polymdegradstab.2009.11.023

    Article  CAS  Google Scholar 

  77. Díaz E, Sandonis I, Valle MB (2014) In vitro degradation of poly(caprolactone)/nHA composites. J Nanomater 2014:1–8

    Article  Google Scholar 

  78. Chouzouri G, Xanthos M (2007) In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers. Acta Biomater 3:745–756. https://doi.org/10.1016/j.actbio.2007.01.005

    Article  CAS  PubMed  Google Scholar 

  79. Peitl O, Zanotto ED, Hench LL (2001) Highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics. J Non Cryst Solids 292:115–126

    Article  CAS  Google Scholar 

  80. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017. https://doi.org/10.1126/science.1067404

    Article  CAS  PubMed  Google Scholar 

  81. Crovace MC, Souza MT, Chinaglia CR et al (2016) Biosilicate ®—A multipurpose, highly bioactive glass-ceramic. In vitro, in vivo and clinical trials. J Non Cryst Solids 432:90–110. https://doi.org/10.1016/j.jnoncrysol.2015.03.022

    Article  CAS  Google Scholar 

  82. Mueller ML, Ottensmeyer MP, Thamm JR et al (2022) Increased osteogenic activity of dynamic cultured composite bone scaffolds: characterization and in vitro study. J Oral Maxillofac Surg 80:303–312. https://doi.org/10.1016/J.JOMS.2021.10.011

    Article  PubMed  Google Scholar 

  83. Pahlevanzadeh F, Bakhsheshi-Rad HR, Hamzah E (2018) In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements. J Mech Behav Biomed Mater 82:257–267. https://doi.org/10.1016/j.jmbbm.2018.03.016

    Article  CAS  PubMed  Google Scholar 

  84. Yoon B, Kim H, Lee S et al (2005) Stability and cellular responses to fluorapatite–collagen composites. Biomaterials 26:2957–2963. https://doi.org/10.1016/j.biomaterials.2004.07.062

    Article  CAS  PubMed  Google Scholar 

  85. Kim H, Lee E, Kim H et al (2005) Effect of fluoridation of hydroxyapatite in hydroxyapatite-polycaprolactone composites on osteoblast activity. Biomaterials 26:4395–4404. https://doi.org/10.1016/j.biomaterials.2004.11.008

    Article  CAS  PubMed  Google Scholar 

  86. Farley J, Wergedal J, Baylink D (1982) Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells. Science 222:330–332. https://doi.org/10.1126/science.6623079

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Raja Ramanna Centre for Advanced Technology (RRCAT), Indore, India; Indian Institute of Technology-BHU, Varanasi, India; and Sophisticated Analytical Instrument Facility (SAIF), Manipal University Jaipur, India for providing the necessary characterisation facilities.

Funding

This research work was supported by Science and Engineering Research Board-Department of Science and Technology (SERB-DST), New Delhi, India by providing ‘Research Grant’ [EMR/2016/007981] and Manipal University Jaipur, India by providing ‘Seed Grant’ [MUJ/REGR/1435/05].

Author information

Authors and Affiliations

Authors

Contributions

VSK: Methodology, Investigation, Software, Writing—original draft, Validation, Formal analysis, Funding acquisition. RKS: Methodology, Investigation, Formal analysis. AKA: Resources, Formal analysis. DK: Formal analysis. AKD: Resources, Formal analysis. SBG: Resources, Writing—review & editing, Funding acquisition, Supervision. SBG: Resources, Writing—review & editing, Funding acquisition, Supervision.

Corresponding author

Correspondence to Sanchita Bandyopadhyay-Ghosh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial and non-financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumawat, V.S., Saini, R.K., Agrawal, A.K. et al. Nano-fluorcanasite-fluorapatite Reinforced Poly-ε-caprolactone Based Biomimetic Scaffold: A Synergistic Approach Towards Generation of Conducive Environment for Cell Survival. J Polym Environ 32, 411–429 (2024). https://doi.org/10.1007/s10924-023-02977-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02977-w

Keywords

Navigation