Skip to main content
Log in

The Role of Poly-glycerol Sebacate/Gelatin Coating Layer on Biological Features and Calcification Rate of 3D Melt-Molded Antibacterial Scaffold for Heart Valve Tissue Engineering

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Heart valve disorders (HVD) caused by medical complications like calcification, thrombosis and infective endocarditis are a reason for cardiac dysfunctionality. The main aim of the present study was to develop a 3D polymeric antibacterial heart valve to prevent endocarditis and infection at the surgical site, through heart valve tissue engineering (HVTE), as a novel approach for the treatment of HVD. In this regard, using a 3D printed designed mold, a scaffold of poly glycerol sebacate: polycaprolactone: gelatin (50:40:10) containing ciprofloxacin, a broad-spectrum antibacterial drug, was made using melt molding method (D1 scaffold). Then, a layer of PGS-gelatin was coated on the optimized scaffold using a dip coating and EDC-NHS cross-linking agent (D2 scaffold). Based on the results, the D1 presented a 21.17 ± 0.8° contact angle while in D2 it was 37.49 ± 1.3°. The calcification rate also showed a lower amount of calcium and phosphorus deposition on the cross-linked surface of D2 (6.12 ± 0.35 µg mg−1) compared with D1 (14.2 ± 1.27 µg mg−1). D2 also demonstrated a remarkable antibacterial activity which was effective against Gram-negative and Gram-positive bacteria. The in vitro release profile showed that D2 can release ciprofloxacin gradually and continuously for over 140 h. The D2 showed a non-thrombogenic interface based on blood compatibility testing. Cell study results assessed by the Alamar Blue, Calcein-AM, and Hoechst stain assay, revealed that the human cardiac fibroblasts grew well on D2 compared to D1. The results of the present study support the main idea of ​​creating an antibacterial and biocompatible 3D biomimetic heart valve for HVTE.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chambers BJ (2017) Heart valve disease and prosthetic heart valves. Acute Med: Pract Guide Manage Med Emerg. https://doi.org/10.1002/9781119389613.ch51

    Article  Google Scholar 

  2. Allen CJ, Patterson T, Chehab O et al (2020) Incidence and outcomes of infective endocarditis following transcatheter aortic valve implantation. Expert Rev Cardiovasc Ther 18:653–662. https://doi.org/10.1080/14779072.2020.1839419

    Article  CAS  PubMed  Google Scholar 

  3. Sailahari V, Ponnaluri MS, Sacks KBM (2023) The accelerated transcatheter heart valve testing environment: loading, motion, and fluid dynamics. J Biomech Eng 145:031005. https://doi.org/10.1115/1.4056291

    Article  Google Scholar 

  4. Narine K, Dabiri Y, Ronsky J, Ali I (2019) Percutaneous aortic valve distortion increases chances of valve failure. Struct Heart 3:102. https://doi.org/10.1080/24748706.2019.1591104

    Article  Google Scholar 

  5. Malmberg M, Anttila V, Rautava P et al (2022) Long-term outcomes of mechanical versus biological valve prosthesis in native mitral valve infective endocarditis. Scand Cardiovasc J 56:132–137. https://doi.org/10.1080/14017431.2022.2079712

    Article  CAS  PubMed  Google Scholar 

  6. Khan A, Aslam A, Satti KN, Ashiq S (2020) Infective endocarditis post-transcatheter aortic valve implantation (TAVI), microbiological profile and clinical outcomes: a systematic review. PLoS One 15:1–19. https://doi.org/10.1371/journal.pone.0225077

    Article  CAS  Google Scholar 

  7. Le TP, Yeaman MR, Bayer AS (2014) Treatment of experimental and human bacterial endocarditis with quinolone antimicrobial agents. Quinolone Antimicrob Agents. https://doi.org/10.1128/9781555817817.ch16

    Article  Google Scholar 

  8. Avery LM, Felberbaum CB, Hasan M (2018) Ciprofloxacin for the treatment of Cardiobacterium hominis prosthetic valve endocarditis. IDCases 11:77–79. https://doi.org/10.1016/j.idcr.2018.01.016

    Article  PubMed  PubMed Central  Google Scholar 

  9. Günday C, Anand S, Gencer HB et al (2020) Ciprofloxacin-loaded polymeric nanoparticles incorporated electrospun fibers for drug delivery in tissue engineering applications. Drug Deliv Transl Res 10:706–720. https://doi.org/10.1007/s13346-020-00736-1

    Article  CAS  PubMed  Google Scholar 

  10. Jahnavi S, Kumary TV, Bhuvaneshwar GS et al (2015) Engineering of a polymer layered bio-hybrid heart valve scaffold. Mater Sci Eng C 51:263–273. https://doi.org/10.1016/j.msec.2015.03.009

    Article  CAS  Google Scholar 

  11. Badv M, Bayat F, Weitz JI, Didar TF (2020) Single and multi-functional coating strategies for enhancing the biocompatibility and tissue integration of blood-contacting medical implants. Biomaterials 258:120291. https://doi.org/10.1016/j.biomaterials.2020.120291

    Article  CAS  PubMed  Google Scholar 

  12. Rossi A, Barbieri A, Benfari G et al (2021) Heart valve calcification and cardiac hemodynamics. Echocardiography 38:525–530. https://doi.org/10.1111/echo.14994

    Article  PubMed  Google Scholar 

  13. Aguiari P, Iop L, Favaretto F et al (2017) In vitro comparative assessment of decellularized bovine pericardial patches and commercial bioprosthetic heart valves. Biomed Mater (Bristol). https://doi.org/10.1088/1748-605X/aa5644

    Article  Google Scholar 

  14. Nachlas ALY, Li S, Davis ME (2017) Developing a clinically relevant tissue engineered heart valve—a review of current approaches. Adv Health Mater 6:1–30. https://doi.org/10.1002/adhm.201700918

    Article  CAS  Google Scholar 

  15. Xue Y, Sant V, Phillippi J, Sant S (2017) Biodegradable and biomimetic elastomeric scaffolds for tissue-engineered heart valves. Acta Biomater 48:2–19. https://doi.org/10.1016/j.actbio.2016.10.032

    Article  CAS  PubMed  Google Scholar 

  16. Dettin M, Sieni E, Zamuner A et al (2019) A novel 3D Sca ff old for cell growth to assess electroporation efficacy. Cells 8:1–20

    Article  Google Scholar 

  17. Weber M, Torre IG, De, Moreira R et al (2014) Multiple-step injection moulding for fibrin-based tissue- engineered heart valves. Tissue Eng  Part C Methods 49:1–26

    Google Scholar 

  18. Allaf RM (2018) Melt-molding technologies for 3D scaffold engineering. In: Functional 3D tissue engineering scaffolds (pp. 75–100). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100979-6.00004-5

  19. Jana S, Tefft BJ, Spoon DB, Simari RD (2014) Scaffolds for tissue engineering of cardiac valves. Acta Biomater 10:2877–2893. https://doi.org/10.1016/j.actbio.2014.03.014

    Article  CAS  PubMed  Google Scholar 

  20. Jana S, Simari RD, Spoon DB, Lerman A (2014) Drug delivery in aortic valve tissue engineering. J Control Release 196:307–323. https://doi.org/10.1016/j.jconrel.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  21. Biswas MC, Jony B, Nandy PK et al (2021) Recent advancement of biopolymers and their potential biomedical applications. J Polym Environ 30(1):51–74. https://doi.org/10.1007/S10924-021-02199-Y

    Article  Google Scholar 

  22. Yu W, Jiang Y, Lin F et al (2022) Surface biofunctionalization of tissue engineered for the development of biological heart valves: a review. Coatings. https://doi.org/10.3390/coatings12091322

    Article  Google Scholar 

  23. Fallahiarezoudar E, Ahmadipourroudposht M, Idris A, Mohd Yusof N (2015) A review of: application of synthetic scaffold in tissue engineering heart valves. Mater Sci Eng C 48:556–565. https://doi.org/10.1016/j.msec.2014.12.016

    Article  CAS  Google Scholar 

  24. Sanz-Garcia A, Oliver-De-La-Cruz J, Mirabet V et al (2015) Heart valve tissue engineering: how far is the bedside from the bench? Expert Rev Mol Med. https://doi.org/10.1017/erm.2015.15

    Article  PubMed  Google Scholar 

  25. Ricklefs M, Korossis S, Haverich A, Schilling T (2017) Polymeric scaffolds for bioartificial cardiovascular prostheses. In: Baino F (ed) Scaffolds in tissue engineering-materials, technologies and clinical applications. InTech, London

    Google Scholar 

  26. Theus AS, Tomov ML, Cetnar A et al (2019) Biomaterial approaches for cardiovascular tissue engineering. Emergent Mater 2:193–207. https://doi.org/10.1007/s42247-019-00039-3

    Article  CAS  Google Scholar 

  27. Zulkifli Z, Tan JJ, Ishak K et al (2022) Shape memory poly (glycerol sebacate)-based electrospun fiber scaffolds for tissue engineering applications: a review. Appl Polym Sci 139:52272. https://doi.org/10.1002/app.52272

    Article  CAS  Google Scholar 

  28. Zanjanizadeh Ezazi N, Ajdary R, Correia A et al (2020) Fabrication and characterization of drug-loaded conductive poly(glycerol sebacate)/nanoparticle-based composite patch for myocardial infarction applications. ACS Appl Mater Interfaces 12:6899–6909. https://doi.org/10.1021/acsami.9b21066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tirgar M, Hosseini H, Jafari M et al (2022) Introducing a flexible drug delivery system based on poly(glycerol sebacate)-urethane and its nanocomposite: potential application in the prevention and treatment of oral diseases. J Biomater Sci Polym Ed 33:443–464. https://doi.org/10.1080/09205063.2021.1992588

    Article  CAS  PubMed  Google Scholar 

  30. Xiang P, Wang SS, He M et al (2018) The in vitro and in vivo biocompatibility evaluation of electrospun recombinant spider silk protein/PCL/gelatin for small caliber vascular tissue engineering scaffolds. Colloids Surf B 163:19–28. https://doi.org/10.1016/j.colsurfb.2017.12.020

    Article  CAS  Google Scholar 

  31. Rostamian M, Kalaee MR, Dehkordi SR et al (2020) Design and characterization of poly(glycerol-sebacate)-co-poly(caprolactone) (PGS-co-PCL) and its nanocomposites as novel biomaterials: the promising candidate for soft tissue engineering. Eur Polymer J 138:109985. https://doi.org/10.1016/j.eurpolymj.2020.109985

    Article  CAS  Google Scholar 

  32. Luginina M, Schuhladen K, Orrú R et al (2020) Electrospun PCL/PGS composite fibers incorporating bioactive glass particles for soft tissue engineering applications. Nanomaterials. https://doi.org/10.3390/nano10050978

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shirazaki P, Varshosaz J, Kharazi A (2017) Electrospun gelatin/poly(glycerol sebacate) membrane with controlled release of antibiotics for wound dressing. Adv Biomed Res 6:105. https://doi.org/10.4103/abr.abr_197_16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kermani PK, Kharazi AZ (2022) A promising antibacterial wound dressing made of electrospun poly (glycerol sebacate)/gelatin with local delivery of ascorbic acid and pantothenic acid. J Polym Environ. https://doi.org/10.21203/rs.3.rs-1906247/v1

    Article  Google Scholar 

  35. Nadim A, Khorasani SN, Kharaziha M, Davoodi SM (2017) Design and characterization of dexamethasone-loaded poly (glycerol sebacate)-poly caprolactone/gelatin scaffold by coaxial electro spinning for soft tissue engineering. Mater Sci Eng C 78:47–58. https://doi.org/10.1016/j.msec.2017.04.047

    Article  CAS  Google Scholar 

  36. Fallon ME, Le HH, Bates NM et al (2022) Hemocompatibility of micropatterned biomaterial surfaces is dependent on topographical feature size. Front Physiol 13:1–13. https://doi.org/10.3389/fphys.2022.983187

    Article  Google Scholar 

  37. Vogt L, Rivera LR, Liverani L et al (2019) Poly(ε-caprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents. Mater Sci Eng C 103:109712. https://doi.org/10.1016/j.msec.2019.04.091

    Article  CAS  Google Scholar 

  38. Alipour H, Saudi A, Mirazi H, Kazemi MH, Alavi O, Zeraatpisheh Z, Abolhassani S, Rafienia M (2022) The effect of vitamin C-loaded electrospun polycaprolactone/poly (glycerol sebacate) fibers for peripheral nerve tissue engineering. J Polym Environ. https://doi.org/10.1007/s10924-022-02554-7

    Article  Google Scholar 

  39. Salehi S, Fathi M, Javanmard SH et al (2014) Generation of PGS/PCL blend nanofibrous scaffolds mimicking corneal stroma structure. Macromol Mater Eng 299:455–469. https://doi.org/10.1002/mame.201300187

    Article  CAS  Google Scholar 

  40. Rioux Y, Fradette J, Maciel Y et al (2022) Biofabrication of sodium alginate hydrogel scaffolds for heart valve tissue engineering. Int J Mol Sci. https://doi.org/10.3390/ijms23158567

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zargar Kharazi A, Atari M, Vatankhah E, Haghjooy Javanmard SH (2018) A nanofibrous bilayered scaffold for tissue engineering of small diameter blood vessels. Polym Adv Technol. https://doi.org/10.1002/pat.4437

    Article  Google Scholar 

  42. National Center for Biotechnology Information (2023) PubChem compound summary for CID 2764, ciprofloxacin. https://pubchem.ncbi.nlm.nih.gov/compound/Ciprofloxacin. Accessed 29 Jan 2023

  43. van Oeveren W (2013) Obstacles in haemocompatibility testing. Scientifica 2013:1–14. https://doi.org/10.1155/2013/392584

    Article  Google Scholar 

  44. Nasr Azadani A (2019) In vitro experimental methods for assessment of prosthetic heart valves. In: Principles of heart valve engineering. Elsevier, pp 213–238

  45. Amrollahi P, Tayebi L (2016) Bioreactors for heart valve tissue engineering: a review. J Chem Technol Biotechnol 91:847–856. https://doi.org/10.1002/jctb.4825

    Article  CAS  Google Scholar 

  46. Boloori Zadeh P, Corbett SC, Nayeb-Hashemi H (2014) In-vitro calcification study of polyurethane heart valves. Mater Sci Eng C 35:335–340. https://doi.org/10.1016/j.msec.2013.11.015

    Article  CAS  Google Scholar 

  47. Zhou Y, Richards AM, Wang P (2017) Characterization and standardization of cultured cardiac fibroblasts for ex vivo models of heart fibrosis and heart ischemia. Tissue Eng Part C Methods 23:422–433. https://doi.org/10.1089/ten.tec.2017.0169

    Article  CAS  PubMed  Google Scholar 

  48. Asadollahi M, Gerashi E, Zohrevand M et al (2022) Improving mechanical properties and biocompatibility of 3D printed PLA by the addition of PEG and titanium particles, using a novel incorporation method. Bioprinting 27:e00228. https://doi.org/10.1016/j.bprint.2022.e00228

    Article  Google Scholar 

  49. Atari M, Mohammadalizadeh Z, Kharazi AZ (2022) The effect of different solvent systems on physical properties of electrospun poly (glycerol sebacate)/poly (ɛ-caprolactone) blend. Polym Plast Technol Mater 61:789–802. https://doi.org/10.1080/25740881.2021.2022161

    Article  CAS  Google Scholar 

  50. Talebi A, Labbaf S, Atari M, Parhizkar M (2021) Polymeric nanocomposite structures based on functionalized graphene with tunable properties for nervous tissue replacement. ACS Biomater Sci Eng. https://doi.org/10.1021/acsbiomaterials.1c00744

    Article  PubMed  Google Scholar 

  51. Yoon S, Chen B (2018) Elastomeric and pH-responsive hydrogels based on direct crosslinking of the poly(glycerol sebacate) pre-polymer and gelatin. Polym Chem 9:3727–3740. https://doi.org/10.1039/c8py00544c

    Article  CAS  Google Scholar 

  52. Kimura T, Kondo M, Hashimoto Y et al (2019) Surface topography of PDMS replica transferred from various decellularized aortic lumens affects cellular orientation. ACS Biomater Sci Eng 5:5721–5726. https://doi.org/10.1021/acsbiomaterials.8b01536

    Article  CAS  PubMed  Google Scholar 

  53. Fioretta ES, Dijkman PE, Emmert MY, Hoerstrup SP (2018) The future of heart valve replacement: recent developments and translational challenges for heart valve tissue engineering. J Tissue Eng Regen Med 12:e323–e335. https://doi.org/10.1002/term.2326

    Article  CAS  PubMed  Google Scholar 

  54. Atcha H, Liu WF (2019) Immunological considerations for heart valve replacements. In: Principles of heart valve engineering (pp. 321–342). Academic Press. https://doi.org/10.1016/B978-0-12-814661-3.00012-5

  55. Hesari SM, Ghorbani F, Ghorbani F et al (2021) Plasma surface modification technique–induced gelatin grafting on bio-originated polyurethane porous matrix: physicochemical and in vitro study. Polym Polym Compos 29:640–651. https://doi.org/10.1177/0967391120929076

    Article  CAS  Google Scholar 

  56. Piszko P, Kryszak B, Piszko A, Szustakiewicz K (2021) Brief review on poly(glycerol sebacate) as an emerging polyester in biomedical application: structure, properties and modifications. Polym Med 51:0–0. https://doi.org/10.17219/pim/139585

    Article  Google Scholar 

  57. Skopinska-Wisniewska J, Tuszynska M, Olewnik-Kruszkowska E (2021) Comparative study of gelatin hydrogels modified by various cross-linking agents. Materials 14:1–15

    Article  Google Scholar 

  58. Ma N, Cheung DY, Butcher JT (2022) Incorporating nanocrystalline cellulose into a multifunctional hydrogel for heart valve tissue engineering applications. J Biomed Mater Res Part A 110:76–91. https://doi.org/10.1002/jbm.a.37267

    Article  CAS  Google Scholar 

  59. Heydari P, Varshosaz J, Zargar Kharazi A, Karbasi S (2018) Preparation and evaluation of poly glycerol sebacate/poly hydroxy butyrate core-shell electrospun nanofibers with sequentially release of ciprofloxacin and simvastatin in wound dressings. Polym Adv Technol 29:1795–1803. https://doi.org/10.1002/pat.4286

    Article  CAS  Google Scholar 

  60. Reimer J, Syedain Z, Haynie B et al (2017) Implantation of a tissue-engineered tubular heart valve in growing lambs. Ann Biomed Eng 45:439–451. https://doi.org/10.1007/s10439-016-1605-7

    Article  PubMed  Google Scholar 

  61. Eskandarinia A, Rafienia M, Navid S, Agheb M (2018) Physicochemical, antimicrobial and cytotoxic characteristics of corn starch film containing propolis for wound dressing. J Polym Environ 26:3345–3351. https://doi.org/10.1007/s10924-018-1216-5

    Article  CAS  Google Scholar 

  62. Ding X, Chen Y, Chao CA et al (2020) Control the mechanical properties and degradation of poly (glycerol sebacate) by substitution of the hydroxyl groups with palmitates. Macromol Biosci 2000101:1–12. https://doi.org/10.1002/mabi.202000101

    Article  CAS  Google Scholar 

  63. Krook NM, LeBlon C, Jedlicka SS (2014) In vitro examination of poly (glycerol sebacate) degradation kinetics: effects of porosity and cure temperature. MRS proceedings 1621:mrsf13–1621–h05–15. https://doi.org/10.1557/opl.2014.68

  64. Yang B, Lv W, Deng Y (2017) Drug loaded poly(glycerol sebacate) as a local drug delivery system for the treatment of periodontal disease. RSC Adv 7:37426–37435. https://doi.org/10.1039/c7ra02796f

    Article  CAS  Google Scholar 

  65. Jover E, Fagnano M, Angelini G, Madeddu P (2018) Cell sources for tissue engineering strategies to treat calcific valve disease. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2018.00155

    Article  PubMed  PubMed Central  Google Scholar 

  66. Khosravi R, Best CA, Allen RA et al (2016) Long-term functional efficacy of a novel electrospun poly(glycerol sebacate)-based arterial graft in mice. Ann Biomed Eng. https://doi.org/10.1007/s10439-015-1545-7

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sukhorukova IV, Sheveyko AN, Shvindina NV et al (2017) Approaches for controlled ag +ion release: influence of surface topography, roughness, and bactericide content. ACS Appl Mater Interfaces 9:4259–4271. https://doi.org/10.1021/acsami.6b15096

    Article  CAS  PubMed  Google Scholar 

  68. Sukhlaaied W, Riyajan SA (2018) A Novel environmentally compatible bio-based product from gelatin and natural rubber: physical properties. J Polym Environ 26:2708–2719. https://doi.org/10.1007/s10924-017-1161-8

    Article  CAS  Google Scholar 

  69. Khalili S, Ghane N, Nouri Khorasani S et al (2022) Cytocompatibility and antibacterial properties of coaxial electrospun nanofibers containing ciprofloxacin and indomethacin drugs. Polymers 14:2565. https://doi.org/10.3390/polym14132565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Battogtokh G, Joo Y, Abuzar SM et al (2022) Gelatin coating for the improvement of stability and cell uptake of hydrophobic drug-containing liposomes. Molecules 27:1–12. https://doi.org/10.3390/molecules27031041

    Article  CAS  Google Scholar 

  71. Abudula T, Gauthaman K, Mostafavi A et al (2020) Sustainable drug release from polycaprolactone coated chitin-lignin gel fibrous scaffolds. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-76971-w

    Article  CAS  Google Scholar 

  72. Obireddy SR, Chintha M, Kashayi CR et al (2020) Gelatin-coated dual cross-linked sodium alginate/magnetite nanoparticle microbeads for controlled release of doxorubicin. ChemistrySelect 5:10276–10284. https://doi.org/10.1002/slct.202002604

    Article  CAS  Google Scholar 

  73. Zusso M, Lunardi V, Franceschini D et al (2019) Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway. J Neuroinflamm 16:148. https://doi.org/10.1186/s12974-019-1538-9

    Article  CAS  Google Scholar 

  74. Vogt L, Ruther F, Salehi S, Boccaccini AR (2021) Poly(glycerol sebacate) in biomedical applications—a review of the recent literature. Adv Health Mater. https://doi.org/10.1002/adhm.202002026

    Article  Google Scholar 

  75. Kevadiya BD, Rajkumar S, Bajaj HC et al (2014) Biodegradable gelatin-ciprofloxacin-montmorillonite composite hydrogels for controlled drug release and wound dressing application. Colloids Surf B 122:175–183. https://doi.org/10.1016/j.colsurfb.2014.06.051

    Article  CAS  Google Scholar 

  76. Xu Q, Xu Z, Jiang X et al (2021) Antibacterial coatings based on polycaprolactone and polyurethane with prolonged release of ciprofloxacin. Surf Coat Technol 405:126584. https://doi.org/10.1016/j.surfcoat.2020.126584

    Article  CAS  Google Scholar 

  77. Gruppuso M, Guagnini B, Musciacchio L et al (2022) Tuning the drug release from antibacterial polycaprolactone/rifampicin-based core-shell electrospun membranes: a proof of concept. ACS Appl Mater Interfaces 14:27599–27612. https://doi.org/10.1021/ACSAMI.2C04849/SUPPL_FILE/AM2C04849_SI_001.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Eskandarinia A, Kefayat A, Agheb M et al (2020) A novel bilayer wound dressing composed of a dense polyurethane/propolis membrane and a biodegradable polycaprolactone/gelatin nanofibrous scaffold. Sci Rep 10:1–16. https://doi.org/10.1038/s41598-020-59931-2

    Article  CAS  Google Scholar 

  79. Iga C, Agata T, Marcin Ł et al (2020) Ciprofloxacin-modified degradable hybrid polyurethane-polylactide porous scaffolds developed for potential use as an antibacterial scaffold for regeneration of skin. Polymers. https://doi.org/10.3390/polym12010171

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ayati Najafabadi SA, Shirazaki P, Zargar Kharazi A et al (2018) Evaluation of sustained ciprofloxacin release of biodegradable electrospun gelatin/poly(glycerol sebacate) mat membranes for wound dressing applications. Asia Pac J Chem Eng 13:1–12. https://doi.org/10.1002/apj.2255

    Article  CAS  Google Scholar 

  81. Jusu SM, Obayemi JD, Salifu AA et al (2020) Drug-encapsulated blend of PLGA-PEG microspheres: in vitro and in vivo study of the effects of localized/targeted drug delivery on the treatment of triple-negative breast cancer. Sci Rep 10:1–23. https://doi.org/10.1038/s41598-020-71129-0

    Article  CAS  Google Scholar 

  82. Faezeh Ghahreman, Semnani D, Khorasani SN et al (2020) Polycaprolactone–gelatin membranes in controlled drug delivery of 5-fluorouracil. Polym Sci Ser A 62:636–647. https://doi.org/10.1134/S0965545X20330020

    Article  Google Scholar 

  83. Jamshidi M, Rajabian M, Avery MB et al (2020) A novel self-expanding primarily bioabsorbable braided flow-diverting stent for aneurysms: initial safety results. J NeuroInterv Surg 12:700–705. https://doi.org/10.1136/neurintsurg-2019-015555

    Article  PubMed  Google Scholar 

  84. Fungmongkonsatean T, Jongjitwimol J, Paensuwan P et al (2022) Hemocompatibility evaluation of Thai Bombyx mori silk fibroin and its improvement with low molecular weight heparin immobilization. Polymers. https://doi.org/10.3390/polym14142943

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gilham D, Corp R, Kulikowski E et al (2020) Calcification, and plaque vulnerability through a BET-dependent epigenetic mechanism apabetalone (RVX-208) inhibits key drivers of vascular inflammation, calcification, and plaque vulnerability through a BET-dependent epigenetic mechanism. RESVERLOGIX pooster–Confrancess. https://doi.org/10.1093/eurheartj/ehz746.0459

  86. Emmert MY, Schmitt BA, Loerakker S et al (2018) Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aan4587

    Article  PubMed  Google Scholar 

  87. D’Amore A, Luketich SK, Raffa GM et al (2018) Heart valve scaffold fabrication: bioinspired control of macro-scale morphology, mechanics and micro-structure. Biomaterials 150:25–37. https://doi.org/10.1016/j.biomaterials.2017.10.011

    Article  CAS  PubMed  Google Scholar 

  88. Braune S, Lendlein A, Jung F (2018) Developing standards and test protocols for testing the hemocompatibility of biomaterials. In: Hemocompatibility of biomaterials for clinical applications (pp. 51–76). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100497-5.00004-5

  89. Leszczak V, Smith BS, Popat KC (2013) Hemocompatibility of polymeric nanostructured surfaces. J Biomater Sci Polym Ed 24:1529–1548. https://doi.org/10.1080/09205063.2013.777228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chernysheva MG, Chaschin IS, Badun GA, Vasil’ev VG, Mikheev IV, Shen T, Sinolits MA, Bakuleva NP (2023) Novel nanodiamond coatings for durable xenogenic heart valve prostheses: mechanical properties and in vivo stability. Colloids Surf A 656:130373. https://doi.org/10.1016/j.colsurfa.2022.130373

    Article  CAS  Google Scholar 

  91. Tripathi S, Singh BN, Singh D et al (2021) Optimization and evaluation of ciprofloxacin-loaded collagen/chitosan scaffolds for skin tissue engineering. 3 Biotech 11:1–17. https://doi.org/10.1007/s13205-020-02567-w

    Article  Google Scholar 

  92. Kluin J, Talacua H, Smits AIPM et al (2017) In situ heart valve tissue engineering using a bioresorbable elastomeric implant from material design to 12 months follow-up in sheep. Biomaterials 125:101–117. https://doi.org/10.1016/j.biomaterials.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  93. Brugmans M, Serrero A, Cox M et al (2019) Morphology and mechanisms of a novel absorbable polymeric conduit in the pulmonary circulation of sheep. Cardiovasc Pathol 38:31–38. https://doi.org/10.1016/j.carpath.2018.10.008

    Article  CAS  PubMed  Google Scholar 

  94. Fischer M, Maitz MF, Werner C (2018) Coatings for biomaterials to improve hemocompatibility. In: Hemocompatibility of biomaterials for clinical applications (pp. 163–190). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100497-5.00007-0

  95. Badria AF, Koutsoukos PG, Mavrilas D (2020) Decellularized tissue-engineered heart valves calcification: what do animal and clinical studies tell us? J Mater Sci Mater Med. https://doi.org/10.1007/s10856-020-06462-x

    Article  PubMed  PubMed Central  Google Scholar 

  96. Mabrouk M, Beherei HH, Das DB (2020) Recent progress in the fabrication techniques of 3D scaffolds for tissue engineering. Mater Sci Eng C 110:110716. https://doi.org/10.1016/j.msec.2020.110716

    Article  CAS  Google Scholar 

  97. Yuan W, Zhao N, Yu B et al (2014) Thermo-responsive gelatin-functionalized PCL film surfaces for improvement of cell adhesion and intelligent recovery of gene-transfected cells. Sci China Chem 57:586–595. https://doi.org/10.1007/s11426-013-5028-0

    Article  CAS  Google Scholar 

  98. Soumen Jana1 RTT and AL (2015) Cells for tissue engineering of cardiac valve. J Tissue Eng Regen Med 12:181–204. https://doi.org/10.1002/term.2010

    Article  CAS  Google Scholar 

  99. Thanarak J, Mohammed H, Pashneh-Tala S et al (2019) Enhanced collagen production from human dermal fibroblasts on poly(glycerol sebacate)-methacrylate scaffolds. BMEiCON 2018–11th Biomedical Engineering International Conference 1(4). https://doi.org/10.1109/BMEiCON.2018.8609928

  100. Trautmann A, Rüth M, Lemke HD et al (2018) Two-photon polymerization based large scaffolds for adhesion and proliferation studies of human primary fibroblasts. Opt Laser Technol 106:474–480. https://doi.org/10.1016/j.optlastec.2018.05.008

    Article  CAS  Google Scholar 

  101. Ajmal G, Bonde GV, Mittal P et al (2019) Biomimetic PCL-gelatin based nanofibers loaded with ciprofloxacin hydrochloride and quercetin: a potential antibacterial and anti-oxidant dressing material for accelerated healing of a full thickness wound. Int J Pharm 567:118480. https://doi.org/10.1016/j.ijpharm.2019.118480

    Article  CAS  PubMed  Google Scholar 

  102. Touré ABR, Mele E, Christie JK (2020) Multi-layer scaffolds of poly(Caprolactone), poly(glycerol sebacate) and bioactive glasses manufactured by combined 3d printing and electrospinning. Nanomaterials 10:1–16. https://doi.org/10.3390/nano10040626

    Article  CAS  Google Scholar 

  103. Ino JM, Sju E, Ollivier V et al (2013) Evaluation of hemocompatibility and endothelialization of hybrid poly(vinyl alcohol) (PVA)/gelatin polymer films. J Biomed Mater Res Part B Appl Biomater 101:1549–1559. https://doi.org/10.1002/jbm.b.32977

    Article  CAS  Google Scholar 

  104. Lee SH, Lee KW, Gade PS et al (2018) Microwave-assisted facile fabrication of porous poly (glycerol sebacate) scaffolds. J Biomater Sci Polym Ed 29:907–916. https://doi.org/10.1080/09205063.2017.1335076

    Article  CAS  PubMed  Google Scholar 

  105. Zhang J, Tao R, Campbell KF et al (2019) Functional cardiac fibroblasts derived from human pluripotent stem cells via second heart field progenitors. Nat Commun 10. https://doi.org/10.1038/s41467-019-09831-5

    Article  Google Scholar 

  106. Högerle BA, Schneider M, Sudrow K et al (2018) Effects on human heart valve immunogenicity in vitro by high concentration cryoprotectant treatment. J Tissue Eng Regen Med 12:e1046–e1055. https://doi.org/10.1002/term.2426

    Article  CAS  PubMed  Google Scholar 

  107. Chester AH, Grande-Allen KJ (2020) Which biological properties of heart valves are relevant to tissue engineering? Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2020.00063

    Article  PubMed  PubMed Central  Google Scholar 

  108. van Loon SLM, Smits M, Driessen-Mol AIP et al (2013) The immune response in in situ tissue engineering of aortic heart valves. Calcif Aortic Valve Dis. https://doi.org/10.5772/54354

    Article  Google Scholar 

  109. Human P, Bezuidenhout D, Aikawa E, Zilla P (2022) Residual bioprosthetic valve immunogenicity: Forgotten, not lost. Front Cardiovasc Med 8:1–11. https://doi.org/10.3389/fcvm.2021.760635

    Article  CAS  Google Scholar 

  110. Ground M, Waqanivavalagi S, Walker R et al (2021) Models of immunogenicity in preclinical assessment of tissue engineered heart valves. Acta Biomater 133:102–113. https://doi.org/10.1016/j.actbio.2021.05.049

    Article  CAS  PubMed  Google Scholar 

  111. Ullm S, Krüger A, Tondera C et al (2014) Biocompatibility and inflammatory response in vitro and in vivo to gelatin-based biomaterials with tailorable elastic properties. Biomaterials 35:9755–9766

    Article  CAS  PubMed  Google Scholar 

  112. Sha D, Wu Z, Zhang J et al (2021) Development of modified and multifunctional poly(glycerol sebacate) (PGS)-based biomaterials for biomedical applications. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2021.110830

    Article  Google Scholar 

  113. Lei Y, Bortolin L, Benesch-Lee F et al (2021) Hyaluronic acid regulates heart valve interstitial cell contraction in fibrin-based scaffolds. Acta Biomater 136:124–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Petrigliano FA, Arom GA, Nazemi AN et al (2015) In vivo evaluation of electrospun polycaprolactone graft for anterior cruciate ligament engineering. Tissue Eng Part A 21:1228–1236. https://doi.org/10.1089/ten.tea.2013.0482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Stander BA, van Vollenstee FA, Kallmeyer K et al (2018) An in vitro and in vivo study on the properties of hollow polycaprolactone cell-delivery particles. PLoS One 13:1–19. https://doi.org/10.1371/journal.pone.0198248

    Article  CAS  Google Scholar 

  116. Farzamfar S, Salehi M, Tavangar SM et al (2019) A novel polycaprolactone/carbon nanofiber composite as a conductive neural guidance channel: an in vitro and in vivo study. Prog Biomater 8:239–248. https://doi.org/10.1007/s40204-019-00121-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dong R, Liu C, Tian S et al (2020) Electrospun polycaprolactone (PCL)-amnion nanofibrous membrane prevents adhesions and promotes nerve repair in a rat model of sciatic nerve compression. PLoS One 15:1–16. https://doi.org/10.1371/journal.pone.0244301

    Article  CAS  Google Scholar 

  118. Hjortnaes J, Mokhles MM, Takkenberg JJM, Bouten CVC (2021) Editorial: heart valve tissue Engineering: are we ready for clinical translation? Front Cardiovasc Med 8:1–2. https://doi.org/10.3389/fcvm.2021.658719

    Article  Google Scholar 

  119. Zhang BL, Bianco RW, Schoen FJ (2019) Preclinical assessment of cardiac valve substitutes: current status and considerations for engineered tissue heart valves. Front Cardiovasc Med 6:1–9. https://doi.org/10.3389/fcvm.2019.00072

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial support of this research by Isfahan University of Technology and Isfahan University of Medical Sciences- Applied Physiology Research Center (APRC) in IRAN. Also, grateful thanks for any beneficial guidance and precious assists from Dr. Setareh Jandaghian (Pharmacist) and Dr. Mohammad Tajmir-Reahi (MD-Cardiovascular Surgeon) in Isfahan University of Medical Science.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MA: Conceptualization, Investigation, Methodology, Data Analyzing, Writing—original draft, Writing—review and editing. SL: Supervision, Methodology, Investigation, Writing—review and editing. SHJ: Supervision, Methodology, Investigation, Writing—review and editing, corresponding author.

Corresponding author

Correspondence to Shaghayegh Haghjooy Javanmard.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atari, M., Labbaf, S. & Haghjooy Javanmard, S. The Role of Poly-glycerol Sebacate/Gelatin Coating Layer on Biological Features and Calcification Rate of 3D Melt-Molded Antibacterial Scaffold for Heart Valve Tissue Engineering. J Polym Environ 32, 111–132 (2024). https://doi.org/10.1007/s10924-023-02957-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02957-0

Keywords

Navigation