Skip to main content
Log in

Long-Term Functional Efficacy of a Novel Electrospun Poly(Glycerol Sebacate)-Based Arterial Graft in Mice

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Many surgical interventions for cardiovascular disease are limited by the availability of autologous vessels or suboptimal performance of prosthetic materials. Tissue engineered vascular grafts show significant promise, but have yet to achieve clinical efficacy in small caliber (<5 mm) arterial applications. We previously designed cell-free elastomeric grafts containing solvent casted, particulate leached poly(glycerol sebacate) (PGS) that degraded rapidly and promoted neoartery development in a rat model over 3 months. Building on this success but motivated by the need to improve fabrication scale-up potential, we developed a novel method for electrospinning smaller grafts composed of a PGS microfibrous core enveloped by a thin poly(ε-caprolactone) (PCL) outer sheath. Electrospun PGS–PCL composites were implanted as infrarenal aortic interposition grafts in mice and remained patent up to the 12 month endpoint without thrombosis or stenosis. Many grafts experienced a progressive luminal enlargement up to 6 months, however, due largely to degradation of PGS without interstitial replacement by neotissue. Lack of rupture over 12 months confirmed sufficient long-term strength, due primarily to the persistent PCL sheath. Immunohistochemistry further revealed organized contractile smooth muscle cells and neotissue in the inner region of the graft, but a macrophage-driven inflammatory response to the residual polymer in the outer region of the graft that persisted up to 12 months. Overall, the improved surgical handling, long-term functional efficacy, and strength of this new graft strategy are promising, and straightforward modifications of the PGS core should hasten cellular infiltration and associated neotissue development and thereby lead to improved small vessel replacements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

TEVG:

Tissue engineered vascular graft

PGS:

Poly(glycerol sebacate)

PCL:

Poly(ε-caprolactone)

SCPL:

Solvent casted particulate leached

IAA:

Infrarenal abdominal aorta

References

  1. Albert, J. D., D. A. Bishop, D. A. Fullerton, D. N. Campbell, and D. R. Clarke. Conduit reconstruction of the right ventricular outflow tract: lessons learned in a twelve-year experience. J. Thorac. Cardiovasc. Surg. 106:228–235, 1993.

    CAS  PubMed  Google Scholar 

  2. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics: 2015 update—a report from the American Heart Association. Circulation 131:e29–e322, 2015.

    Article  Google Scholar 

  3. Balguid, A., A. Mol, M. H. van Marion, R. A. Bank, C. V. C. Bouten, and F. P. T. Baaijens. Tailoring fiber diameter in electrospun scaffold for optimal cellular infiltration in cardiovascular tissue engineering. Tissue Eng. Part A 15:437–444, 2009.

    Article  CAS  PubMed  Google Scholar 

  4. Bersi, M. R., M. J. Collins, E. Wilson, and J. D. Humphrey. Disparate changes in the mechanical properties of murine carotid arteries and aorta in response to chronic infusion of angiotensin-II. Int. J. Adv. Eng. Sci. Appl. Math. 4:228–240, 2012.

    Article  Google Scholar 

  5. Dahl, S. L., A. P. Kypson, J. H. Lawson, J. L. Blum, J. T. Strader, Y. Li, R. J. Manson, W. E. Tente, L. DiBernardo, M. T. Hensley, R. Carter, T. P. Williams, H. L. Prichard, M. S. Dey, K. G. Begelman, and L. E. Niklason. Readily available tissue-engineered vascular grafts. Sci. Transl. Med. 368:68–69, 2011.

    Google Scholar 

  6. Ferruzzi, J., M. R. Bersi, and J. D. Humphrey. Biomechanical phenotyping of central arteries in health and disease: advantages of and methods for murine models. Ann. Biomed. Eng. 41:1311–1330, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferruzzi, J., M. R. Bersi, S. Uman, H. Yanagisawa, and J. D. Humphrey. Decreased elastic energy storage, not increased material stiffness, characterizes central artery dysfunction in Fibulin-5 deficiency independent of sex. J. Biomech. Eng. 137:031007, 2015.

    Article  Google Scholar 

  8. Garg, K., N. A. Pullen, C. A. Ozkeritzian, J. J. Ryan, and G. L. Bowlin. Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds. Biomaterials 34:4439–4451, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. Oxford: Pergamon Press, 1988.

    Google Scholar 

  10. Gleason, R. L., S. P. Gray, E. Wilson, and J. D. Humphrey. A multiaxial computer-controlled organ culture and biomechanical device for mouse carotid arteries. ASME J. Biomech. Eng. 126:787–795, 2004.

    Article  CAS  Google Scholar 

  11. Hibino, N., E. McGillicuddy, G. Matsumura, Y. Ichihara, Y. Naito, C. Breuer, and T. Shinoka. Late-term results of tissue-engineered vascular grafts in humans. J. Thorac. Cardiovasc. Surg. 139:431–436, 2010.

    Article  PubMed  Google Scholar 

  12. Jeffries, E. M., R. A. Allen, J. Gao, M. Pesce, and Y. Wang. Highly elastic and suturable electrospun poly(glycerol sebacate) fibrous scaffolds. Acta Biomater. 18:30–39, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Junge, K., M. Binnebosel, K. T. vonTrotha, R. Rosch, U. Klinge, U. P. Neumann, and P. Lynen Jansen. Mesh biocompatibility: effects of cellular inflammation and tissue remodeling. Langenbecks Arch. Surg. 397:255–270, 2012.

    Article  PubMed  Google Scholar 

  14. Lopez-Soler, R. I., M. P. Brennan, A. Goyal, Y. Wang, P. Fong, G. Tellides, A. Sinusas, A. Dardik, and C. K. Breuer. Development of a mouse model for evaluation of small diameter vascular grafts. J. Surg. Res. 139:1–6, 2007.

    Article  PubMed  Google Scholar 

  15. Miller, K. S., R. Khosravi, C. K. Breuer, and J. D. Humphrey. Hypothesis-driven parametric study to demonstrate the predictive capability of a computational model of in vivo neovessel development and the role of construct physical properties. Acta Biomater. 11:283–294, 2015.

    Article  CAS  PubMed  Google Scholar 

  16. Miller, K. S., Y. U. Lee, Y. Naito, C. K. Breuer, and J. D. Humphrey. Computational model of in vivo neovessel development from an engineered polymeric vascular construct. J. Biomech. 47:2080–2087, 2014.

    Article  CAS  PubMed  Google Scholar 

  17. New, S. E. P., and E. Aikawa. Cardiovascular calcification. Circ. J. 75:1305–1313, 2011.

    Article  CAS  PubMed  Google Scholar 

  18. Niklason, L. E., J. Gao, W. M. Abbott, K. K. Hirschi, S. Houser, R. Marini, and R. Langer. Functional arteries grown in vitro. Science 284:489–493, 1999.

    Article  CAS  PubMed  Google Scholar 

  19. Pham, Q. P., U. Sharma, and A. G. Mikos. Electrospun poly(CL) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules 7:2796–2805, 2006.

    Article  CAS  PubMed  Google Scholar 

  20. Pomerantseva, I., N. Krebs, A. Hart, C. M. Neville, A. Y. Huang, and C. A. Sundback. Degradation behavior of poly(glycerol sebacate). J. Biomed. Mater. Res. A. 91:1038–1047, 2009.

    Article  PubMed  Google Scholar 

  21. Raggi, P. Inflammation and calcification: the chicken or the hen? Atherosclerosis 238:173–174, 2015.

    Article  CAS  PubMed  Google Scholar 

  22. Rensen, S. S. M., P. A. F. M. Doevendans, and G. J. J. M. van Eys. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth. Heart J. 15:100–108, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roh, J. D., G. N. Nelson, M. P. Brennan, T. L. Mirensky, T. Yi, T. Hazlett, G. Tellides, A. J. Sinusas, J. S. Pober, W. M. Saltzman, T. R. Kyriakides, and C. K. Breuer. Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model. Biomaterials 29:1454–1463, 2008.

    Article  CAS  PubMed  Google Scholar 

  24. Seifu, D. G., A. Purnama, K. Mequanint, and D. Mantovani. Small-diameter vascular tissue engineering. Nat. Rev. Cardiol. 10:410–421, 2013.

    Article  CAS  PubMed  Google Scholar 

  25. Shanahan, C. M. Inflammation ushers in calcification: a cycle of damage and protection? Circulation. 116:2782–2785, 2007.

    Article  PubMed  Google Scholar 

  26. Tara, S., H. Kurobe, K. A. Rocco, M. W. Maxfield, C. A. Best, T. Yi, Y. Naito, C. K. Breuer, and T. Shinoka. Well-organized neointima of large-pore poly(L-lactic acid) vascular graft coated with poly(l-lactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly(l-lactic acid) graft in a mouse aortic implantation model. Atherosclerosis 237:684–691, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Udelsman, B. V., R. Khosravi, K. S. Miller, E. W. Dean, M. R. Bersi, K. Rocco, T. Yi, J. D. Humphrey, and C. K. Breuer. Characterization of evolving biomechanical properties of tissue engineered vascular grafts in the arterial circulation. J. Biomech. 47:2070–2079, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang, Y., G. A. Ameer, B. J. Sheppard, and R. Langer. A tough biodegradable elastomer. Nat. Biotechnol. 20:602–606, 2002.

    Article  CAS  PubMed  Google Scholar 

  29. Wu, W., R. A. Allen, and Y. Wang. Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nat. Med. 18:1148–1153, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wystrychowski, W., T. N. McAllister, K. Zagalski, N. Dusserre, L. Cierpka, and N. L’Heureux. First human use of an allogeneic tissue-engineered vascular graft for hemodialysis access. J. Vasc. Surg. 60:1353–1357, 2014.

    Article  PubMed  Google Scholar 

  31. Zander, N. E., J. A. Orlicki, A. M. Rawlett, and T. P. Beebe. Electrospun polycaprolactone scaffolds with tailored porosity using two approaches for enhanced cellular infiltration. J. Mater. Sci. Mater. Med. 24:179–187, 2013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Morphology Core at Nationwide Children’s Hospital performed histology stainings. The authors are grateful for the expertise of Dr. Kan Hor, Cardiology, Nationwide Children’s Hospital, for his assistance with μCT data reconstruction and analysis. This work was supported, in part, by Grants from the NIH: R01 HL128602 (JH, CB, YW), R01 HL089658 (YW), and T32 HL076124 (RK). CB receives Grant support from Gunze Limited and Pall Corporation. The authors have no professional or financial conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramak Khosravi.

Additional information

Associate Editor Ender Finol oversaw the review of this article.

Ramak Khosravi, Cameron A. Best, Robert A. Allen, and Chelsea E.T. Stowell have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10439_2015_1545_MOESM1_ESM.pdf

Supplementary Figure 1 PCL sheath circumference throughout the implantation period. Values are mean ± SEM. Supplementary material 1 (PDF 32 kb)

10439_2015_1545_MOESM2_ESM.pdf

Supplementary Figure 2. (A) Representative von Kossa staining of PGS-PCL arterial TEVGs at 3, 6, and 12 months post-implantation identifies chronic medial calcification that coincides with an increase in F4/80 positive macrophages per high powered field (B). SMC apoptosis, as quantified by Caspase 3 immunofluorescence staining (C), and SMC osteogenic transdifferentiation, as quantified by Runx-2 expression (D) were observed throughout implantation, with no significant difference detected between time points (E). This suggests that chronic inflammation, coincident with persistent SMC apoptosis and osteogenic transdifferentiation, contributed to late-term TEVG calcification. Four fluorescent photomicrographs were acquired at 63X for each section and cells were manually counted based on the coincidence of positive immunolabeling and nuclear staining. Black arrows indicate medial calcification; white arrows denote double positive cells. Values are mean ± SEM. L indicates the lumen. Supplementary material 2 (PDF 2272 kb)

10439_2015_1545_MOESM3_ESM.pdf

Supplementary Figure 3. The energy dissipation ratio (EDR) at 3 months and 12 months for both the graft (TEVG) and the adjacent proximal infrarenal abdominal aorta (PIAA). The EDR of the native IAA in the absence of graft implantation6 is shown for comparison. Values are mean ± SEM. *p < 0.05. Supplementary material 3 (PDF 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi, R., Best, C.A., Allen, R.A. et al. Long-Term Functional Efficacy of a Novel Electrospun Poly(Glycerol Sebacate)-Based Arterial Graft in Mice. Ann Biomed Eng 44, 2402–2416 (2016). https://doi.org/10.1007/s10439-015-1545-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1545-7

Keywords

Navigation