Skip to main content
Log in

Hydrogels in Agriculture: Prospects and Challenges

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Hydrogels retain substantial quantities of both water and nutrients within their three dimensional polymeric network. As such they have the ability to modify the local micro-environment of seeds/seedlings to enhance their growth outcomes. In terms of both safety and sustainability, the use of natural biopolymer based hydrogels is more advantageous. The network structure of hydrogels is typically formed by physical interaction and/or chemical crosslinking between polymer chains. The nature, strength and extent of crosslinking can be tailored to customize gel properties (such as mechanical strength, porosity and swelling behaviour) to suit a given type of application. This review highlights the use of hydrogels in agriculture where they (i) provide drought resistance to crops, (ii) act as reservoirs for critical nutrients, (iii) function as seed coating agents and (iv) improve transplantation success rate. The biodegradability and environmental compatibility of hydrogels for a range of applications in the farming sector is also discussed. Finally, the challenges of modifying hydrogels to suit specific agricultural applications are elaborated including issues that need to be overcome to exploit the full potential of these novel soft materials in sustainable farming practices of the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Leridon H, Population I (2020) Population & Societies. 573:1–4

  2. Water for Sustainable Food and (2017) Agriculture: a report produced for the G20 Presidency of Germany. Food and Agriculture Organization

  3. de Fraiture C, Wichelns D (2010) Satisfying future water demands for agriculture. Agric Water Manag 97:502–511. https://doi.org/10.1016/j.agwat.2009.08.008

    Article  Google Scholar 

  4. Brakke M, Allen LH, Peppas NA et al (2008) Hydrogels from polysaccharide-based materials: Fundamentals and applications in regenerative medicine. J Phys Chem B 112:1–15. https://doi.org/10.21273/jashs.120.3.497

    Article  Google Scholar 

  5. Hasan AMA, Abdel-Raouf ME-S (2019) Cellulose-Based Superabsorbent Hydrogels. 245–267. https://doi.org/10.1007/978-3-319-77830-3_11

  6. Bahram M, Mohseni N, Moghtader M (2016) An Introduction to Hydrogels and Some Recent Applications. Emerg Concepts Anal Appl Hydrogels. https://doi.org/10.5772/64301

  7. Guan Y, Cui H, Ma W et al (2014) An enhanced drought-tolerant method using SA-loaded PAMPS polymer materials applied on tobacco pelleted seeds. Sci World J 2014. https://doi.org/10.1155/2014/752658

    Article  Google Scholar 

  8. Albalasmeh AA, Mohawesh O, Gharaibeh MA et al (2022) Effect of hydrogel on corn growth, water use efficiency, and soil properties in a semi-arid region. J Saudi Soc Agric Sci 21:518–524. https://doi.org/10.1016/j.jssas.2022.03.001

    Article  Google Scholar 

  9. Abobatta W (2018) Impact of hydrogel polymer in agricultural sector. Adv Agric Environ Sci Open Access 1:59–64. https://doi.org/10.30881/aaeoa.00011

    Article  Google Scholar 

  10. Hussien RA, Donia AM, Atia AA et al (2012) Studying some hydro-physical properties of two soils amended with kaolinite-modified cross-linked poly-acrylamides. CATENA 92:172–178. https://doi.org/10.1016/j.catena.2011.12.010

    Article  CAS  Google Scholar 

  11. Womack NC, Piccoli I, Camarotto C et al (2022) Hydrogel application for improving soil pore network in agroecosystems. Preliminary results on three different soils. CATENA 208:105759. https://doi.org/10.1016/j.catena.2021.105759

    Article  CAS  Google Scholar 

  12. Manas C (2006) Introduction to Polymer Science and Chemistry: a problem-solving Approach … Manas Chanda - Google Books. CRC Press

  13. Oliveira JT, Reis RL (2008) Hydrogels from polysaccharide-based materials: Fundamentals and applications in regenerative medicine. Nat Polym Biomed Appl 485–514. https://doi.org/10.1533/9781845694814.4.485

  14. Rozelle LT, Cadotte JE, Corneliussen RD et al (2000) Phase Inversion Membranes. 3331–3346

  15. Shen X, Shamshina JL, Berton P et al (2016) Comparison of Hydrogels prepared with ionic-liquid-isolated vs commercial chitin and cellulose. ACS Sustain Chem Eng 4:471–480. https://doi.org/10.1021/acssuschemeng.5b01400

    Article  CAS  Google Scholar 

  16. Ross-Murphy SB, McEvoy H (1986) Fundamentals of Hydrogels and Gelation. Br Polym J 18:2–7. https://doi.org/10.1002/pi.4980180103

    Article  CAS  Google Scholar 

  17. Winter HH (2002) Gel Point. Encycl Polym Sci Technol 1–15. https://doi.org/10.1002/0471440264.pst476.pub2

  18. Flory PJ, Flory PJ (1941) Polymers and the theory. 132–140

  19. Stockmayer WH (1943) Theory of molecular size distribution and gel formation in branched-chain polymers. J Chem Phys 11:45–55. https://doi.org/10.1063/1.1723803

    Article  CAS  Google Scholar 

  20. Stauffer D, Bunde A (1987) Introduction to Percolation Theory. Phys Today 40:122–123. https://doi.org/10.1063/1.2820231

    Article  Google Scholar 

  21. Kavanagh GM, Ross-Murphy SB (1998) Rheological Characterisation Polymer Gels. Prog Polym Sci 23:533–562

    Article  CAS  Google Scholar 

  22. Dörr D, Kuhn U, Altstädt V (2020) Rheological study of gelation and crosslinking in chemical modified polyamide using a multiwave technique. Polym (Basel) 12:7–9. https://doi.org/10.3390/POLYM12040855

    Article  Google Scholar 

  23. Weng L, Zhang L, Ruan D et al (2004) Thermal gelation of cellulose in a NaOH/Thiourea aqueous solution. Langmuir 20:2086–2093. https://doi.org/10.1021/la035995o

    Article  CAS  PubMed  Google Scholar 

  24. Karoyo A, Wilson L (2017) Physicochemical Properties and the Gelation process of Supramolecular Hydrogels: a review. Gels 3:1. https://doi.org/10.3390/gels3010001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gulrez H, Al-Assaf SK, O S (2011) G Hydrogels: Methods of Preparation, Characterisation and Applications. In: Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications. InTech, pp 117–150

  26. Bohidar HB, Jena SS (1993) Kinetics of sol-gel transition in thermoreversible gelation of gelatin. J Chem Phys 98:8970–8977. https://doi.org/10.1063/1.464456

    Article  CAS  Google Scholar 

  27. Boral S, Saxena A, Bohidar HB (2008) Universal growth of microdomains and gelation transition in agar hydrogels. J Phys Chem B 112:3625–3632. https://doi.org/10.1021/jp7101463

    Article  CAS  PubMed  Google Scholar 

  28. Saruchi, Kaith BS, Jindal R, Kumar V (2015) Biodegradation of Gum tragacanth acrylic acid based hydrogel and its impact on soil fertility. Polym Degrad Stab 115:24–31. https://doi.org/10.1016/j.polymdegradstab.2015.02.009

    Article  CAS  Google Scholar 

  29. Phetwarotai W, Potiyaraj P, Aht-Ong D (2013) Biodegradation of Polylactide and Gelatinized Starch Blend Films under controlled soil burial conditions. J Polym Env 21:95–107. https://doi.org/10.1007/s10924-012-0530-6

    Article  CAS  Google Scholar 

  30. Thombare N, Mishra S, Siddiqui MZ et al (2018) Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications. Carbohydr Polym 185:169–178. https://doi.org/10.1016/j.carbpol.2018.01.018

    Article  CAS  PubMed  Google Scholar 

  31. Tanan W, Panichpakdee J, Saengsuwan S (2019) Novel biodegradable hydrogel based on natural polymers: synthesis, characterization, swelling/reswelling and biodegradability. Elsevier Ltd

  32. Parvathy PC, Jyothi AN, John KS, Sreekumar J (2014) Cassava Starch based Superabsorbent Polymer as Soil Conditioner: impact on Soil Physico-Chemical and Biological Properties and Plant Growth. Clean - Soil Air Water 42:1610–1617. https://doi.org/10.1002/clen.201300143

    Article  CAS  Google Scholar 

  33. El-Hady OA, Abd El-Kader AA, Shafi AM (2009) Physico-bio-chemical properties of sandy soil conditioned with acrylamide hydrogels after cucumber plantation. Aust J Basic Appl Sci 3:3145–3151

    CAS  Google Scholar 

  34. Sharma B, Agrawal R, Singhania RR et al (2015) Untreated wheat straw: potential source for diverse cellulolytic enzyme secretion by Penicillium janthinellum EMS-UV-8 mutant. Bioresour Technol 1–29. https://doi.org/10.1016/j.biortech.2015.08.012

  35. Yoshimura T, Matsuo K, Fujioka R (2006) Novel biodegradable superabsorbent hydrogels derived from cotton cellulose and succinic anhydride: synthesis and characterization. J Appl Polym Sci 99:3251–3256. https://doi.org/10.1002/app.22794

    Article  CAS  Google Scholar 

  36. Ranganathan N, Joseph Bensingh R, Abdul Kader M, Nayak SK (2018) Cellulose-Based Hydrogels for Agricultures. 1–21. https://doi.org/10.1007/978-3-319-76573-0_34-1

  37. Nie H, Liu M, Zhan F, Guo M (2004) Factors on the preparation of carboxymethylcellulose hydrogel and its degradation behavior in soil. Carbohydr Polym 58:185–189. https://doi.org/10.1016/j.carbpol.2004.06.035

    Article  CAS  Google Scholar 

  38. Pattanaaik SK, Wangchu L, Singh B et al (2015) Effect of hydrogel on water and nutrient management of citrus reticulata. Res Crop 16:98–103. https://doi.org/10.5958/2348-7542.2015.00015.7

    Article  Google Scholar 

  39. Jhurry D (1998) Agricultural Polymers. In: Lalouette JA, Bachraz DY, Sukurdeep N, Seebaluck BD (eds) Second Annual Meeting of Agricultural Scientists. pp 109–113

  40. Siyamak S (2020) Functional starch-based hydrogels. Renewable material solutions for wastewater and agriculture industries

  41. Heise K, Kirsten M, Schneider Y et al (2019) From Agricultural Byproducts to Value-Added materials: wheat straw-based hydrogels as Soil Conditioners? ACS Sustain Chem Eng 7:8604–8612. https://doi.org/10.1021/acssuschemeng.9b00378

    Article  CAS  Google Scholar 

  42. Abou-Baker NH, Ouis M, Abd-Eladl M, Ibrahim MM (2020) Transformation of Lignocellulosic Biomass to Cellulose-Based hydrogel and agriglass to Improve Beans yield. Waste Biomass Valoriz 11:3537–3551. https://doi.org/10.1007/s12649-019-00699-6

    Article  CAS  Google Scholar 

  43. Su L, Li J, Xue H, Wang X (2017) feng Super absorbent polymer seed coatings promote seed germination and seedling growth of Caragana korshinskii in drought. J Zhejiang Univ Sci B 18:696–706. https://doi.org/10.1631/jzus.B1600350

  44. Guilherme MR, Aouada FA, Fajardo AR et al (2015) Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review. Eur Polym J 72:365–385. https://doi.org/10.1016/j.eurpolymj.2015.04.017

    Article  CAS  Google Scholar 

  45. Chatzoudis GK, Rigas F (1998) Macroreticular Hydrogel Effects on Dissolution Rate of controlled-release fertilizers. J Agric Food Chem 46:2830–2833. https://doi.org/10.1021/jf970969f

    Article  CAS  Google Scholar 

  46. Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Mater (Basel) 2:353–373. https://doi.org/10.3390/ma2020353

    Article  CAS  Google Scholar 

  47. Brakke M, Allen LH (1995) Gas exchange of Citrus seedlings at different temperatures, vapor-pressure deficits, and soil water contents. J Am Soc Hortic Sci 120:497–504. https://doi.org/10.21273/jashs.120.3.497

    Article  Google Scholar 

  48. Taylor SH, Ripley BS, Woodward FI, Osborne CP (2011) Drought limitation of photosynthesis differs between C3 and C4 grass species in a comparative experiment. Plant Cell Environ 34:65–75. https://doi.org/10.1111/j.1365-3040.2010.02226.x

    Article  CAS  PubMed  Google Scholar 

  49. Montesano FF, Parente A, Santamaria P et al (2015) Biodegradable Superabsorbent Hydrogel increases Water Retention Properties of growing media and plant growth. Agric Agric Sci Procedia 4:451–458. https://doi.org/10.1016/j.aaspro.2015.03.052

    Article  Google Scholar 

  50. Demitri C, Scalera F, Madaghiele M et al (2013) Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int J Polym Sci 2013:. https://doi.org/10.1155/2013/435073

  51. Hüttermann A, Zommorodi M, Reise K (1999) Addition of hydrogels to soil for prolonging the survival of Pinus halepensis seedlings subjected to drought. Soil Tillage Res 50:295–304. https://doi.org/10.1016/S0167-1987(99)00023-9

    Article  Google Scholar 

  52. Gabriel GR, Joshua GB, Ashley YC et al (2020) Synthesis and characterization of sodium carboxymethyl cellulose/sodium alginate/hydroxypropyl cellulose hydrogel for agricultural water storage and controlled nutrient release. Solid State Phenom 304 SSP:51–57. https://doi.org/10.4028/www.scientific.net/SSP.304.51

    Article  Google Scholar 

  53. Khodadadi Dehkordi D (2017) Effect of superabsorbent polymer on salt and drought resistance of Eucalptus globulus. Appl Ecol Environ Res 15:1791–1802

    Article  Google Scholar 

  54. Sabir N, Singh B, Coordinator P et al (2011) Superabsorbent hydrogels for efficient biocontrol of root knot nematodes for healthy tomato nursery. Curr Sci 100:635–637

    CAS  Google Scholar 

  55. Rehman A, Ahmad R, Safdar M (2011) Effect of hydrogel on the performance of aerobic rice sown under different techniques. Plant Soil Environ 57:321–325. https://doi.org/10.17221/81/2011-pse

    Article  CAS  Google Scholar 

  56. Lopes MBS, Tavares TCDO, Veloso DA et al (2017) Cowpea bean production under water stress using hydrogels. Pesqui Agropecuária Trop 47:87–92

    Article  Google Scholar 

  57. Mazloom N, Khorassani R, Zohury GH et al (2020) Lignin-based hydrogel alleviates drought stress in maize. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2020.104055. 175:

    Article  Google Scholar 

  58. Luo Z, Bin, Li K, Jiang X, Polle A (2009) Ectomycorrhizal fungus (paxillus involutus) and hydrogels affect performance of Populus euphratica exposed to drought stress. Ann For Sci 66:106–106. https://doi.org/10.1051/forest:2008073

    Article  CAS  Google Scholar 

  59. Arbona V, Iglesias DJ, Jacas J et al (2005) Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant Soil 270:73–82. https://doi.org/10.1007/s11104-004-1160-0

    Article  CAS  Google Scholar 

  60. Akiyama H, Yan X, Yagi K (2010) Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N 2 O and NO emissions from agricultural soils: meta-analysis. Glob Chang Biol 16:1837–1846. https://doi.org/10.1111/j.1365-2486.2009.02031.x

    Article  Google Scholar 

  61. Sharma VK, Singh RP (2014) Organic matrix based slow release fertilizer enhances plant growth, nitrate assimilation and seed yield of indian mustard (Brassica juncea L). J Environ Biol 32:619

    Google Scholar 

  62. Sempeho SI, Kim HT, Mubofu E, Hilonga A (2014) Meticulous Overview on the Controlled Release Fertilizers. 2014

  63. Adak T, Kumar J, Shakil NA, Pandey S (2016) Role of nano-range amphiphilic polymers in seed quality enhancement of soybean and imidacloprid retention capacity on seed coatings. J Sci Food Agric 96:4351–4357. https://doi.org/10.1002/jsfa.7643

    Article  CAS  PubMed  Google Scholar 

  64. Olad A, Gharekhani H, Mirmohseni A, Bybordi A (2018) Superabsorbent nanocomposite based on maize bran with integration of water-retaining and slow-release NPK fertilizer. Adv Polym Technol 37:1682–1694. https://doi.org/10.1002/adv.21825

    Article  CAS  Google Scholar 

  65. Davidson DW, Verma MS, Gu FX (2013) Controlled root targeted delivery of fertilizer using an ionically crosslinked carboxymethyl cellulose hydrogel matrix. Springerplus 2:1–9. https://doi.org/10.1186/2193-1801-2-318

    Article  CAS  Google Scholar 

  66. Sarkar DJ, Singh A, Gaur SR, Shenoy AV (2016) Viscoelastic properties of borax loaded CMC-g-cl-poly(AAm) hydrogel composites and their boron nutrient release behavior. J Appl Polym Sci 133:1–11. https://doi.org/10.1002/app.43969

    Article  CAS  Google Scholar 

  67. Rathna GVN, Rao DVM, Chatterji PR, Kinetics (1996)J Macromol Sci Part A33:1199–1207. https://doi.org/10.1080/10601329608010914

    Article  Google Scholar 

  68. Cukier RI (1984) Diffusion of Brownian Spheres in Semidilute Polymer Solutions. Macromolecules 17:252–255. https://doi.org/10.1021/ma00132a023

    Article  CAS  Google Scholar 

  69. Cohen MH, Turnbull D (1959) Molecular transport in liquids and glasses. J Chem Phys 31:1164–1169. https://doi.org/10.1063/1.1730566

    Article  CAS  Google Scholar 

  70. Mackie JS, Meares P (1955) The diffusion of electrolytes in a cation-exchange resin membrane I. Theoretical. Proc R Soc London Ser A Math Phys Sci 232:498–509. https://doi.org/10.1098/rspa.1955.0234

    Article  CAS  Google Scholar 

  71. Axpe E, Chan D, Offeddu GS et al (2019) A Multiscale Model for Solute Diffusion in Hydrogels. Macromolecules 52:6889–6897. https://doi.org/10.1021/acs.macromol.9b00753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Islam MR, Mao S, Xue X, Eneji AE (2011) A lysimeter study of nitrate leaching, optimum fertilisation rate and growth responses of corn (Zea mays L.) following soil amendment with water-saving super-absorbent polymer. J Sci Food Agric 91:1990–1997. https://doi.org/10.1002/jsfa.4407

    Article  CAS  PubMed  Google Scholar 

  73. Laftah WA, Hashim S (2012) Synthesis, optimization, characterization and agricultural field evaluation of polymer hydrogel composites based on poly acrylic acid and micro-fiber of oil palm empty fruit bunch. Int J Plast Technol 16:166–181. https://doi.org/10.1007/s12588-012-9040-6

    Article  CAS  Google Scholar 

  74. Li J, Li Y, Dong H (2008) Controlled release of Herbicide Acetochlor from Clay / Carboxylmethylcellulose Gel Formulations. J Agric Food Chem 56:1336–1342

    Article  CAS  PubMed  Google Scholar 

  75. Essawy HA, Ghazy MBM, El-Hai FA, Mohamed MF (2016) Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Int J Biol Macromol 89:144–151. https://doi.org/10.1016/j.ijbiomac.2016.04.071

    Article  CAS  PubMed  Google Scholar 

  76. Senna AM, Braga J, Mauro J, Botaro VR (2015) Synthesis, characterization and application of hydrogel derived from cellulose acetate as a substrate for slow-release NPK fertilizer and water retention in soil. J Environ Chem Eng 3:996–1002. https://doi.org/10.1016/j.jece.2015.03.008

    Article  CAS  Google Scholar 

  77. González ME, Cea M, Medina J et al (2015) Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Sci Total Environ 505:446–453. https://doi.org/10.1016/j.scitotenv.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  78. Belmokhtar FZ, Elbahri Z, Elbahri M (2018) Preparation and optimization of agrochemical 2,4-D controlled release microparticles using designs of experiments. J Mex Chem Soc 62:1–13. https://doi.org/10.29356/jmcs.v62i1.579

    Article  CAS  Google Scholar 

  79. Li J, Jiang M, Wu H, Li Y (2009) Addition of modified bentonites in polymer gel formulation of 2,4-D for its controlled release in water and soil. J Agric Food Chem 57:2868–2874. https://doi.org/10.1021/jf803744w

    Article  CAS  PubMed  Google Scholar 

  80. Okçu G, KAYA MD, Mehmet ATAK (2005) Effects of Salt and Drought stresses on germination and seedling growth of pea (Pisum sativum L). Turkish J Agric For 29:237–242

    Google Scholar 

  81. Hillel D, Kozlowski TT (2012) Soil moisture and seed germination. Water deficits and plant growth

  82. Singh H (2012) Effect of Hydrogel on Growth, Yield and Water Use Efficiency in Pearlmillet (Pennisetum Glaucum). Production 38:27–28

    Google Scholar 

  83. Pathak V, Ambrose RPK (2020) Starch-based biodegradable hydrogel as seed coating for corn to improve early growth under water shortage. J Appl Polym Sci 137:1–12. https://doi.org/10.1002/app.48523

    Article  CAS  Google Scholar 

  84. Amirkhani M, Netravali AN, Huang W, Taylor AG (2016) Investigation of soy protein–based biostimulant seed coating for broccoli seedling and plant growth enhancement. HortScience 51:1121–1126. https://doi.org/10.21273/HORTSCI10913-16

    Article  CAS  Google Scholar 

  85. Zvinavashe AT, Laurent J, Mhada M et al (2021) Programmable design of seed coating function induces water-stress tolerance in semi-arid regions. Nat Food 2:485–493. https://doi.org/10.1038/s43016-021-00315-8

    Article  PubMed  Google Scholar 

  86. Ovalesha MA, Yadav B, Kumar Rai P (2017) Effects of polymer seed coating and seed treatment on plant growth, seed yield and quality of Cowpea (Vigna unguiculata). Pharmacogn Phytochem 6:106–109

    CAS  Google Scholar 

  87. Ren XX, Chen C, Ye ZH et al (2019) Development and application of seed coating agent for the control of major soil-borne diseases infecting wheat. Agronomy 9. https://doi.org/10.3390/agronomy9080413

  88. Mangold JM, Sheley RL (2007) Effects of soil texture, watering frequency, and a hydrogel on the emergence and survival of coated and uncoated crested wheatgrass seeds. Ecol Restor 25:6–11. https://doi.org/10.3368/er.25.1.6

    Article  Google Scholar 

  89. de Almeida C, Rocha SC dos, Razera S (2005) LF Polymer coating, germination and vigor of broccoli seeds. Sci Agric 62:221–226. https://doi.org/10.1590/s0103-90162005000300004

  90. Carminati A, Moradi A (2010) How the soil-root interface affects water availability to plants

  91. Apostol KG, Jacobs DF, Dumroese RK (2009) Root desiccation and drought stress responses of bareroot Quercus rubra seedlings treated with a hydrophilic polymer root dip. Plant Soil 315:229–240. https://doi.org/10.1007/s11104-008-9746-6

    Article  CAS  Google Scholar 

  92. Sarvaš M (2003) Effect of desiccation on the root system of Norway spruce (Picea abies [L.] Karst.) Seedlings and a possibility of using hydrogel STOCKOSORB® for its protection. J For Sci 49:531–536. https://doi.org/10.17221/4796-jfs

    Article  Google Scholar 

  93. Thomas DS (2008) Hydrogel applied to the root plug of subtropical eucalypt seedlings halves transplant death following planting. For Ecol Manage 255:1305–1314. https://doi.org/10.1016/j.foreco.2007.10.035

    Article  Google Scholar 

  94. Günes T (2007) Effect of polymer on seedling survival and growth of transplanted tomato under water-stress. Asian J Chem 19:3208–3214

    Google Scholar 

  95. Wei J, Yang H, Cao H, Tan T (2016) Using polyaspartic acid hydro-gel as water retaining agent and its effect on plants under drought stress. Saudi J Biol Sci 23:654–659. https://doi.org/10.1016/j.sjbs.2015.08.016

    Article  CAS  PubMed  Google Scholar 

  96. Mudhanganyi A, Ndagurwa HGT, Maravanyika C, Mwase R (2018) The influence of hydrogel soil amendment on the survival and growth of newly transplanted Pinus patula seedlings. J For Res 29:103–109. https://doi.org/10.1007/s11676-017-0428-1

    Article  CAS  Google Scholar 

  97. Kolodynska D, Skiba A, Gorecka B, Hubicki Z (2016) Hydrogels from fundaments to application. Emerg Concepts Anal Appl Hydrogels. https://doi.org/10.5772/63466

    Article  Google Scholar 

  98. Misiewicz J, Lejcu K, Dąbrowska J, Marczak D (2019) The characteristics of Absorbency under load (AUL) for Superabsorbent and Soil Mixtures. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-54744-4

    Article  CAS  Google Scholar 

  99. Bai W, Song J, Zhang H (2013) Repeated water absorbency of super-absorbent polymers in agricultural field applications: a simulation study. Acta Agric Scand Sect B Soil Plant Sci 63:433–441. https://doi.org/10.1080/09064710.2013.797488

    Article  CAS  Google Scholar 

  100. Sobrinho JF, Barbosa FEL (2020) Water absorption by Hydrogel using fertilizers. Environ Nat Resour Res 10:26. https://doi.org/10.5539/enrr.v10n2p26

    Article  Google Scholar 

  101. Banedjschafie S, Durner W (2015) Water retention properties of a sandy soil with superabsorbent polymers as affected by aging and water quality. J Plant Nutr soil Sci 178:798–806

    Article  CAS  Google Scholar 

  102. Li A, Wang A (2005) Synthesis and properties of clay-based superabsorbent composite. Eur Polym J 41:1630–1637. https://doi.org/10.1016/j.eurpolymj.2005.01.028

    Article  CAS  Google Scholar 

  103. Xitao H, Jie Z, Canhui Y (2022) Harnessing osmotic swelling stress for robust hydrogel actuators. Soft Matter 2022:5177–5184

    Google Scholar 

  104. Elhaouzi F, Mdarhri A, Brosseau C et al (2018) Effects of swelling on the effective mechanical and electrical properties of a carbon black – filled polymer. Polym Bull 76:2765–2776. https://doi.org/10.1007/s00289-018-2519-3

    Article  CAS  Google Scholar 

  105. Wach RA, Mitomo H, Nagasawa N, Yoshii F (2003) Radiation crosslinking of carboxymethylcellulose of various degree of substitution at high concentration in aqueous solutions of natural pH. Radiat Phys Chem 68:771–779. https://doi.org/10.1016/S0969-806X(03)00403-1

    Article  CAS  Google Scholar 

  106. Ghanbarzadeh B, Almasi H, Entezami AA (2010) Physical properties of edible modi fi ed starch / carboxymethyl cellulose fi lms. Innov Food Sci Emerg Technol 11:697–702. https://doi.org/10.1016/j.ifset.2010.06.001

    Article  CAS  Google Scholar 

  107. Prusov AN, Prusova SM (2007) Viscosity properties of aqueous solutions of carboxymethylcellulose and hydroxyethylcellulose blends. Fibre Chem 39:11–14

    Article  Google Scholar 

  108. Phisalaphong M, Jatupaiboon N (2008) Biosynthesis and characterization of bacteria cellulose-chitosan film. Carbohydr Polym 74:482–488. https://doi.org/10.1016/j.carbpol.2008.04.004

    Article  CAS  Google Scholar 

  109. Anbergen U, Oppermannt W (1990) Elasticity and swelling behaviour of chemically crosslinked cellulose ethers in aqueous systems *. Polym (Guildf) 31:1854–1858

    Article  CAS  Google Scholar 

  110. Wang Y, Wang Z, Wu K et al (2017) Synthesis of cellulose-based double-network hydrogels demonstrating high strength, self-healing, and antibacterial properties. Carbohydr Polym 168:112–120. https://doi.org/10.1016/j.carbpol.2017.03.070

    Article  CAS  PubMed  Google Scholar 

  111. Sun JY, Zhao X, Illeperuma WRK et al (2012) Highly stretchable and tough hydrogels. Nature 489:133–136. https://doi.org/10.1038/nature11409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hua J, Ng PF, Fei B (2018) High-strength hydrogels: Microstructure Design, characterization and applications. J Polym Sci Part B Polym Phys 56:1325–1335. https://doi.org/10.1002/polb.24725

    Article  CAS  Google Scholar 

  113. Thoniyot P, Tan MJ, Karim AA et al (2015) Nanoparticle–hydrogel Composites: Concept, Design, and applications of these Promising, multi-functional materials. Adv Sci 2:1–13. https://doi.org/10.1002/advs.201400010

    Article  CAS  Google Scholar 

  114. Pirzada T, Farias BV, De, Mathew R et al (2020) Recent advances in biodegradable matrices for active ingredient release in crop protection: towards attaining sustainability in agriculture. Curr Opin Colloid Interface Sci 48:121–136. https://doi.org/10.1016/j.cocis.2020.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Berdahl JD, Baker RE (1980) Germination and emergence of russian Wildrye Seeds coated with hydrophilic materials’. Agronomy 72:1006–1008

    Article  CAS  Google Scholar 

  116. Henderson C, Janet (1984) Effect of hydrophilic gels on seed. Kansas State University, Manhattan, Kansas

    Google Scholar 

  117. Gorim L, Asch F (2017) Seed coating increases seed moisture uptake and restricts embryonic oxygen availability in germinating cereal seeds. Biology (Basel) 6:. https://doi.org/10.3390/biology6020031

  118. Vanangamudi K, Srimathi P, Natarajan N, Bhaskaran M (2003) Vanangamudi: Current scenario of seed coating polymer. ICAR-Short Course on Seed Hardening and Pelleting Technologies for Rain Fed or Garden Land Ecosystems. https://scholar.google.com/scholar?hl=en&as_sdt=0,5&cluster=8104024341536005289. Accessed 6 Jun 2021

  119. Ali MAM, Alsabagh AM, Sabaa MW et al (2020) Polyacrylamide hybrid nanocomposites hydrogels for efficient water treatment. Iran Polym J. https://doi.org/10.1007/s13726-020-00810-y

    Article  Google Scholar 

  120. Mujtaba M, Mahmood K, Candido M et al (2020) Chitosan-based delivery systems for plants: a brief overview of recent advances and future directions. Int J Biol Macromol 154:683–697. https://doi.org/10.1016/j.ijbiomac.2020.03.128

    Article  CAS  PubMed  Google Scholar 

  121. Kono H, Fujita S (2012) Biodegradable superabsorbent hydrogels derived from cellulose by esterification crosslinking with 1,2,3,4-butanetetracarboxylic dianhydride. Carbohydr Polym 87:2582–2588. https://doi.org/10.1016/j.carbpol.2011.11.045

    Article  CAS  Google Scholar 

  122. Wilske B, Bai M, Lindenstruth B et al (2014) Biodegradability of a polyacrylate superabsorbent in agricultural soil. Environ Sci Pollut Res 21:9453–9460. https://doi.org/10.1007/s11356-013-2103-1

    Article  CAS  Google Scholar 

  123. Cui X, Lee JJL, Chen WN (2019) Eco-friendly and biodegradable cellulose hydrogels produced from low cost okara: towards non-toxic flexible electronics. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-54638-5

    Article  CAS  Google Scholar 

  124. Song B, Liang H, Sun R et al (2020) Hydrogel synthesis based on lignin/sodium alginate and application in agriculture. Int J Biol Macromol 144:219–230. https://doi.org/10.1016/j.ijbiomac.2019.12.082

    Article  CAS  PubMed  Google Scholar 

  125. Nelson SD (2020) Krilium: the Famous Soil Conditioner of the 1950s. In: Handbook of Soil Conditioners. CRC Press, pp 385–398

Download references

Acknowledgements

The authors are thankful to Deakin University, Geelong, Australia for providing all infrastructural and analytical support as an incubation centre at TERI-Deakin Nanobiotechnology Center (TDNBC), TERI, India. The Science and Engineering Research Board and Department of Biotechnology, Ministry of Science and Technology, Govt. of India is duly acknowledged for providing necessary financial support.

Funding

The authors declare that no grants were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization of the study. Prabhpreet Kaur prepared the first draft and Ruchi Agrawal, Himadri B. Bohidar, Frederick M. Pfeffer and Richard Williams critically reviewed and edited the manuscript. All authors have read the manuscript and provided feedback for scientific and grammatical revisions.

Corresponding author

Correspondence to Himadri B. Bohidar.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, P., Agrawal, R., Pfeffer, F.M. et al. Hydrogels in Agriculture: Prospects and Challenges. J Polym Environ 31, 3701–3718 (2023). https://doi.org/10.1007/s10924-023-02859-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02859-1

Keywords

Navigation