Skip to main content

Advertisement

Log in

Reinforcing Paper Strength with High Viscosity Aminated Cellulose Nanocrystal by Forming Nanocrystal Networks

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Higher tensile and bursting strength are paramount concerns in paper-based packaging materials. Herein, the aminated cellulose nanocrystal (A-CNC) was synthesized by the amination reactions firstly, and the base paper was reinforced via coating hydroxypropyl methylcellulose (HPMC) and A-CNC. The surface morphology and tensile strength of the coated composite paper were characterized and the rheological performance of A-CNC was also investigated. The results clearly demonstrated that coating of HPMC/A-CNC significantly increased the dry tensile strength of composite paper by 1.035 times (32.88 MPa) as compared with base paper (16.16 MPa). In addition, the paper strength as coated with A-CNC was also higher than that of unmodified CNC, which was attributed to the improvement of viscosity of A-CNC. The composite papers coated HPMC/A-CNC showed a great potential in packaging applications with higher mechanical strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cao L, Ge T, Meng F, Xu S, Li J, Wang L (2020) An edible oil packaging film with improved barrier properties and heat sealability from cassia gum incorporating carboxylated cellulose nanocrystal whisker. Food Hydrocolloid 98:105251.1-105251.9. https://doi.org/10.1016/j.foodhyd.2019.105251

    Article  CAS  Google Scholar 

  2. Khwaldia K, Arab-Tehrany E, Desobry S (2010) Biopolymer coatings on paper packaging materials. Compr Rev Food Sci F 9(1):82–91. https://doi.org/10.1111/j.1541-4337.2009.00095.x

    Article  CAS  Google Scholar 

  3. Oh K, Lee M, Lee S, Jung D, Lee H (2018) Cellulose nanofibrils coated paper substrate to detect trace molecules using surface-enhanced Raman scattering. Cellulose 25(6):3339–3350. https://doi.org/10.1007/s10570-018-1806-3

    Article  CAS  Google Scholar 

  4. Dufresne A (2017) Nanocellulose: from nature to high performance. De Gruyter, Berlin

    Book  Google Scholar 

  5. Chowdhury RA, Clarkson CM, Shrestha S, Azrak SA, Mavlan M, Youngblood JP (2019) High-performance waterborne polyurethane coating based on a blocked isocyanate with cellulose nanocrystals (CNC) as the polyol. ACS Appl Polym Mater 2(2):385–393. https://doi.org/10.1021/acsapm.9b00849

    Article  CAS  Google Scholar 

  6. Hormaiztegui ME, Daga B, Aranguren MI, Muccia V (2020) Bio-based waterborne polyurethanes reinforced with cellulose nanocrystals as coating films. Prog in Org Coat 144:105649–105657. https://doi.org/10.1016/j.porgcoat.2020.105649

    Article  CAS  Google Scholar 

  7. Lei W, Zhou X, Fang C, Song YH, Li Y (2019) Eco-friendly waterborne polyurethane reinforced with cellulose nanocrystal from office waste paper by two different methods. Carbohyd Polym 209(1):299–309. https://doi.org/10.1016/j.carbpol.2019.01.013

    Article  CAS  Google Scholar 

  8. He Y, Li H, Fei X, Peng LC (2020) Carboxymethyl cellulose/cellulose nanocrystals immobilized silver nanoparticles as an effective coating to improve barrier and antibacterial properties of paper for food packaging applications. Carbohyd Polym 252(15):117156–117166. https://doi.org/10.1016/j.carbpol.2020.117156

    Article  CAS  Google Scholar 

  9. Guo Z, Guo D, Liu F, Wang H, Song J (2021) Aramid nanofiber reinforced nitrile rubber assisted by cellulose nanocrystals. J Appl Polym Sci 138(23):50546–50559. https://doi.org/10.1002/app.50546

    Article  CAS  Google Scholar 

  10. Amirabada LM, Jonoobi M, Mousavi NS, Oksman K, Kaboorani A, Yousefie H (2018) Improved antifungal activity and stability of chitosan nanofibers using cellulose nanocrystal on banknote papers. Carbohyd Polym 189(1):229–237. https://doi.org/10.1016/j.carbpol.2018.02.041

    Article  CAS  Google Scholar 

  11. Wei Z, Cai C, Huang Y, Wang P, Song J, Deng L, Fu Y (2020) Strong biodegradable cellulose materials with improved crystallinity via hydrogen bonding tailoring strategy for UV blocking and antioxidant activity. Int J Biol Macromol 164(1):27–36. https://doi.org/10.1016/j.ijbiomac.2020.07.100

    Article  CAS  PubMed  Google Scholar 

  12. Musino D, Rivard C, Landrot G, Novales B, Rabilloud T, Capron I (2021) Hydroxyl groups on cellulose nanocrystal surfaces form nucleation points for silver nanoparticles of varying shapes and sizes. J Colloid Interf Sci 584(15):360–371. https://doi.org/10.1016/j.jcis.2020.09.082

    Article  CAS  Google Scholar 

  13. Goffin A, Raquez J, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois PH (2011) Poly(ɛ-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: morphology, rheology, and thermo-mechanical properties. Polymer 52(7):1532–1538. https://doi.org/10.1016/j.polymer.2011.02.004

    Article  CAS  Google Scholar 

  14. Alam KM, Kumar P, Gusarov S, Kobryn AE, Zeng S, Goswami A, Thundat T, Shankar K (2020) Synthesis and characterization of zinc phthalocyanine-cellulose Nanocrystal (CNC) conjugates: toward highly functional CNCs. ACS Appl Mater Inter 12(39):43992–44006. https://doi.org/10.1021/acsami.0c07179

    Article  CAS  Google Scholar 

  15. Poaty B, Vardanyan V, Wilczak L, Chauved G, Riedla B (2014) Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings. Prog Org Coat 77:813–820. https://doi.org/10.1016/j.porgcoat.2014.01.009

    Article  CAS  Google Scholar 

  16. Spinella S, Samuel C, Raquez J, McCallum SA, Gross R, Dubois P (2016) Green and efficient synthesis of dispersible cellulose nanocrystals in biobased polyesters for engineering applications. ACS Sustain Chem Eng 4:2517–2527. https://doi.org/10.1021/acssuschemeng.5b01611

    Article  CAS  Google Scholar 

  17. Ojala J, Sirviö J, Liimatainen H (2016) Nanoparticle emulsifiers based on biofunctionalized cellulose nanocrystals as marine diesel oil-water emulsion stabilizers. Chem Eng J 288(15):312–320. https://doi.org/10.1016/j.cej.2015.10.113

    Article  CAS  Google Scholar 

  18. Bespalova Y, Kwon D, Vasanthan N (2017) Surface modification and antimicrobial properties of cellulose nanocrystals. J Appl Polym Sci 134(18):44789–44795. https://doi.org/10.1002/app.44789

    Article  CAS  Google Scholar 

  19. Muralidharan D, Ramya R, Pandian K (2017) Surface modification of cellulose nanofiber with polyaniline using aniline monolayer as seed for chemical oxidation polymerization of aniline. Asian J Chem 33(2):367–370. https://doi.org/10.14233/ajchem.2021.23013

    Article  CAS  Google Scholar 

  20. Cao L, Cheng Z, Yan M, Chen Y (2019) Anisotropic rubber nanocomposites via magnetic-induced alignment of Fe3O4/cellulose nanocrystals hybrids obtained by templated assembly. Chem Eng J 363(1):203–212. https://doi.org/10.1016/j.cej.2019.01.126

    Article  CAS  Google Scholar 

  21. Dhar P, Kumar A, Katiyar V (2016) Magnetic cellulose nanocrystal based anisotropic polylactic acid nanocomposite films: influence on electrical, magnetic, thermal, and mechanical propertie. ACS Appl Mater Inter 8(28):18393–18409. https://doi.org/10.1021/acsami.6b02828

    Article  CAS  Google Scholar 

  22. Musino D, Rivard C, Landrot G, Novales B, Rabilloud T, Capron I (2021) Hydroxyl groups on cellulose nanocrystal surfaces form nucleation points for silver nanoparticles of varying shapes and sizes-Science Direct. J Colloid Interf Sci 584(15):360–371. https://doi.org/10.1016/j.jcis.2020.09.082

    Article  CAS  Google Scholar 

  23. Wang Y, Liao J, Lu J, Chen J, Gao S, Gan L, Huang G (2020) Regulating surface molecular structure of cellulose nanocrystals to optimize mechanical reinforcement effect on hydrophobic bio-based polyesters. Iran Polym J 29(8):609–705. https://doi.org/10.1007/s13726-020-00832-6

    Article  CAS  Google Scholar 

  24. Lin B, Xu W, Kronlund D, Määttänen A, Liu J, Smått JH, Peltonen J, Willför S, Mu XD, Xu CL (2015) Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation. Carbohyd Polym 133(20):605–612. https://doi.org/10.1016/j.carbpol.2015.07.033

    Article  CAS  Google Scholar 

  25. Sojoudiasli H, Heuzey MC, Carreau PJ, Riedl B (2017) Rheological behavior of suspensions of modified and unmodified cellulose nanocrystals in dimethyl sulfoxide. Rheol Acta 56(7–8):673–682. https://doi.org/10.1007/s00397-017-1022-3

    Article  CAS  Google Scholar 

  26. Akhlaghi SP, Zaman M, Nishil M, Mohammed N, Brinatti C, Batmaz R, Berry R, Loh W, Tam KC (2015) Synthesis of amine functionalized cellulose nanocrystals: optimization and characterization. Carbohyd Res 409(29):48–55. https://doi.org/10.1016/j.carres.2015.03.009

    Article  CAS  Google Scholar 

  27. Pahimanolis N, Hippi U, Johansson LS, Saarinen T, Houbenov N, Ruokolainen J, Seppälä J (2011) Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose 18(5):1201–1212. https://doi.org/10.1007/s10570-011-9573-4

    Article  CAS  Google Scholar 

  28. Pan H, Sun G, Zhao T (2013) Synthesis and characterization of aminated lignin. Int J Biol Macromol 59:221–226. https://doi.org/10.1016/j.ijbiomac.2013.04.049

    Article  CAS  PubMed  Google Scholar 

  29. Passantino JM, Haywood AD, Goswami J, Davis VA (2017) Effects of polymer additives and dispersion state on the mechanical properties of cellulose nanocrystal film. Macromol Mater Eng 302(4):1600351–1600357. https://doi.org/10.1002/mame.201600351

    Article  CAS  Google Scholar 

  30. Mbuli BS, Nxumalo EN, Mhlanga SD, Krause RW, Pillay VL, Charles Y, Linder MBB (2014) Development of antifouling polyamide thin-film composite membranes modified with amino-cyclodextrins and diethylamino-cyclodextrins for water treatment. J Appl Polym Sci 131(8):40109–40118. https://doi.org/10.1002/app.40109

    Article  CAS  Google Scholar 

  31. Sengel SB, Sahiner M, Aktas N, Sahiner N (2017) Halloysite-carboxymethyl cellulose cryogel composite from natural sources. Appl Clay Sci 140:66–74. https://doi.org/10.1016/j.clay.2017.01.031

    Article  CAS  Google Scholar 

  32. Orelma H, Filpponen I, Johansson L, Laine J, Rojas OJ (2011) Modification of cellulose films by adsorption of CMC and chitosan for controlled attachment of biomolecules. Biomacromol 12(12):4311–4318. https://doi.org/10.1021/bm201236a

    Article  CAS  Google Scholar 

  33. Zhang W, Jing Z, Shan Y, Ge X, Mu X, Jiang Y, Li H, Wu P (2016) Paper reinforced with regenerated cellulose: a sustainable and fascinating material with good mechanical performance, barrier properties and shape retention in water. J Mater Chem A 44:17483–17490. https://doi.org/10.1039/C6TA07681E

    Article  CAS  Google Scholar 

  34. Peng X, Ren J, Zhong L, Sun R (2011) Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromol 12(9):3321–3329. https://doi.org/10.1021/bm2008795

    Article  CAS  Google Scholar 

  35. Zhu R, Liu X, Song P, Wang M, Xu F, Jiang Y, Zhang X (2018) An approach for reinforcement of paper with high strength and barrier properties via coating regenerated cellulose. Carbohyd Polym 200(15):100–105. https://doi.org/10.1016/j.carbpol.2018.07.069

    Article  CAS  Google Scholar 

  36. Liu X, Pang J, Zhang X, Wu Y, Sun R (2013) Regenerated cellulose film with enhanced tensile strength prepared with ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIMAc). Cellulose 20(3):1391–1399. https://doi.org/10.1007/s10570-013-9925-3

    Article  CAS  Google Scholar 

  37. Singh N, Mondal D, Sharma M, Devkar RV, Dubey S, Prasad K (2015) Sustainable processing and synthesis of nontoxic and antibacterial magnetic nanocomposite from spider silk in neoteric solvents. Acs Sustain Chem Eng 3:2575–2581. https://doi.org/10.1021/acssuschemeng.5b00810

    Article  CAS  Google Scholar 

  38. Mondragon G, Santamaria-Echart A, Hormaiztegui M, Arbelaiz A, Peña-Rodriguez C, Mucci V, Corcuera M, Aranguren M, Eceiza A (2017) Nanocomposites of waterborne polyurethane reinforced with cellulose nanocrystals from sisal fibres. J Polym Environ 26:1869–1880. https://doi.org/10.1007/s10924-017-1089-z

    Article  CAS  Google Scholar 

  39. Wang X, Tang Y, Zhu X, Zhou Y, Hong X (2020) Preparation and characterization of polylactic acid/polyaniline/nanocrystalline cellulose nanocomposite films. Int J Biol Macromol 146(1):1069–1075. https://doi.org/10.1016/j.ijbiomac.2019.09.233

    Article  CAS  PubMed  Google Scholar 

  40. Lee S, Lee Y, Jho J (2020) Polypropylene composite with aminated cellulose nanocrystal. Poly Korea 44(5):734–740. https://doi.org/10.7317/pk.2020.44.5.734

    Article  CAS  Google Scholar 

  41. Resano-Goizueta I, Ashokan B, Trezza TA, Padua GW (2017) Effect of nano-fillers on tensile properties of biopolymer films. J Polym Environ 26(9):3817–3823. https://doi.org/10.1007/s10924-018-1260-1

    Article  CAS  Google Scholar 

  42. Zhang J, Guo Z, Chen S, Dong H, Zhang X, Qin Y, Yao C, Xu F (2021) High-barrier, strong, and antibacterial paper fabricated by coating acetylated cellulose and cinnamaldehyde for food packaging. Cellulose 2021:1–14. https://doi.org/10.1007/s10570-021-03778-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support by “World-Class Discipline Construction and Characteristic Development Guidance Funds for Beijing Forestry university” (2019XKJS0330).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Wang or Xueming Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The authors alone are responsible for the content and writing of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 343 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, X., Zhu, R., Huang, J. et al. Reinforcing Paper Strength with High Viscosity Aminated Cellulose Nanocrystal by Forming Nanocrystal Networks. J Polym Environ 30, 2474–2482 (2022). https://doi.org/10.1007/s10924-022-02371-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02371-y

Keywords

Navigation