Skip to main content
Log in

Naphthalene and its Derivatives: Efficient Fluorescence Probes for Detecting and Imaging Purposes

  • REVIEW
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Naphthalene, white crystalline solid having polycyclic aromatic hydrocarbon with characteristic mothball order is naturally present in crucial oils of various plants. Naphthalene derivatives are extensive drug resources and are use as wetting agents, surfactants and as insecticides. These derivatives exhibit unique photo physical and chemical properties. These characteristics make them the most studied group of organic compounds. Naphthalene dyes have rigid plane and large π-electron conjugation. Therefor they have high quantum yield and excellent photostability. Naphthalene based fluorescence probes due to hydrophobic nature exhibit excellent sensing and selectivity properties towards anions and cations and also used as a part of target biomolecules. In conjugated probe system, introducing naphthalene moiety caused improvement in photo-stability. Therefore among various conjugated framework, naphthalene derivatives are considered excellent candidate for the construction of organic electronic appliances. These derivatives are useful for a variety of applications owing to their strong fluorescence, electroactivity and photostability. This article is based upon investigation of photophysical properties of naphthalene derivatives and fluorescence detecting probe of naphthalene. For photophysical properties the techniques under investigation are UV visible spectroscopy and fluorescence spectroscopy. Concentration dependent spectra and solvatochromic shifts on UV visible spectra are also part of discussion.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48

Similar content being viewed by others

Availability of Data and Material

All the written material is new not a copy.

Code Availability

Not Applicable.

References

  1. Jung Y et al (2019) A wavelength-tunable and facilely functionable DA type naphthalene core skeleton: Synthesis, photophysical property, and bio-imaging applications for cells and tissues. Dyes Pigm 162:104–111

    CAS  Google Scholar 

  2. Nicolescu A et al (2020) Synthesis, photophysical properties and solvatochromic analysis of some naphthalene-1, 8-dicarboxylic acid derivatives. J Mol Liq 303:112626

    Google Scholar 

  3. Banerjee A et al (2012) A naphthalene exciplex based Al 3+ selective on-type fluorescent probe for living cells at the physiological pH range: experimental and computational studies. Analyst 137(9):2166–2175

    CAS  PubMed  Google Scholar 

  4. Mataga N, Tomura M, Nishimura H (1965) Fluorescence decay times of naphthalene and naphthalene excimers. Mol Phys 9(4):367–375

    CAS  Google Scholar 

  5. Benedetti E, Kocsis LS, Brummond KM (2012) Synthesis and photophysical properties of a series of cyclopenta [b] naphthalene solvatochromic fluorophores. J Am Chem Soc 134(30):12418–12421

    CAS  PubMed  Google Scholar 

  6. Oyama Y et al (2021) Advantages of naphthalene as a building block for organic solid state laser dyes: smaller energy gaps and enhanced stability. J Mater Chem C 9(12):4112–4118

    CAS  Google Scholar 

  7. Lin B et al (2018) A naphthalene-based fluorescent probe with a large Stokes shift for mitochondrial pH imaging. Analyst 143(20):5054–5060

    CAS  PubMed  Google Scholar 

  8. Uthuman A, Jayasinghe C, Fernando A (2019) Acute intravascular hemolysis due to naphthalene toxicity: a case report. J Med Case Rep 13(1):1–3

    Google Scholar 

  9. Lair A et al (2008) Naphthalene degradation in water by heterogeneous photocatalysis: an investigation of the influence of inorganic anions. J Photochem Photobiol A 193(2–3):193–203

    CAS  Google Scholar 

  10. Jing M et al (2020) Catalase and superoxide dismutase response and the underlying molecular mechanism for naphthalene. Sci Total Environ 736:139567

    CAS  PubMed  Google Scholar 

  11. Bunce NJ et al (1997) Reaction of naphthalene and its derivatives with hydroxyl radicals in the gas phase. Environ Sci Technol 31(8):2252–2259

    CAS  Google Scholar 

  12. Rahman MM et al (2012) Severe haemolytic anaemia due to ingestion of naphthalene (mothball) containing coconut oil. J Coll Physicians Surg Pak 22(11):740–741

    PubMed  Google Scholar 

  13. Carratt SA et al (2019) Metabolism and lung toxicity of inhaled naphthalene: Effects of postnatal age and sex. Toxicol Sci 170(2):536–548

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Batterman S et al (2012) Sources, concentrations, and risks of naphthalene in indoor and outdoor air. Indoor Air 22(4):266–278

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Preuss R, Angerer J, Drexler H (2003) Naphthalene—an environmental and occupational toxicant. Int Arch Occup Environ Health 76(8):556–576

    CAS  PubMed  Google Scholar 

  16. Yost EE et al (2021) Health effects of naphthalene exposure: A systematic evidence map and analysis of potential considerations for dose-response evaluation. Environ Health Perspect 129(7):076002

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu R et al (2005) Naphthalene distributions and human exposure in Southern California. Atmos Environ 39(3):489–507

    CAS  Google Scholar 

  18. Ahmad R, Amir SH, Khan SA (2020) Naphthalene mothballs poisoning leading to intravascular hemolysis: a case report. J Emerg Med 58(1):e1–e3

    PubMed  Google Scholar 

  19. Stohs SJ, Ohia S, Bagchi D (2002) Naphthalene toxicity and antioxidant nutrients. Toxicology 180(1):97–105

    CAS  PubMed  Google Scholar 

  20. Buckpitt A et al (2002) Naphthalene-induced respiratory tract toxicity: metabolic mechanisms of toxicity. Drug Metab Rev 34(4):791–820

    CAS  PubMed  Google Scholar 

  21. Wilson AS et al (1996) Characterisation of the toxic metabolite (s) of naphthalene. Toxicology 114(3):233–242

    CAS  PubMed  Google Scholar 

  22. Jafari A et al (2020) Sulfur and nitrogen doped-titanium dioxide coated on glass microspheres as a high performance catalyst for removal of naphthalene (C10H8) from aqueous environments using photo oxidation in the presence of visible and sunlight. Desalin Water Treat 192:195–212

    CAS  Google Scholar 

  23. Volney G et al (2018) Naphthalene toxicity: methemoglobinemia and acute intravascular hemolysis. Cureus 10(8)

  24. Schreiner C (2003) Genetic toxicity of naphthalene: a review. J Toxicol Environ Health Part B 6(2):161–183

    CAS  Google Scholar 

  25. Kovalchuk N et al (2017) Impact of hepatic P450-mediated biotransformation on the disposition and respiratory tract toxicity of inhaled naphthalene. Toxicol Appl Pharmacol 329:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nayak S, Patnaik L (2021) Role of Integrated biomarker response tool for assessment of naphthalene toxicity in anabas testudineus. Bull Environ Contam Toxicol 106(4):568–574

    CAS  PubMed  Google Scholar 

  27. Pirota V et al (2019) Naphthalene diimides as multimodal G-quadruplex-selective ligands. Molecules 24(3):426

    PubMed  PubMed Central  Google Scholar 

  28. Jiang W-N et al (2021) CuI-mediated benzannulation of (ortho-arylethynyl) phenylenaminones to assemble α-aminonaphthalene derivatives. Org Chem Front

  29. Li X-M et al (2021) Antibacterial naphthalene derivatives from the fermentation products of the endophytic fungus phomopsis fukushii. Chem Nat Compd 57(2):293–296

    CAS  Google Scholar 

  30. Merabet D (2018) Treatment of produced water by induced air flotation: effect of both TWEEN 80 and ethanol concentrations on the recovery of PAHs. Nova Biotechnol Chim 17(2):181–192

    Google Scholar 

  31. Javed M et al (2021) Optoelectronic properties of naphthalene bis-benzimidazole based derivatives and their photovoltaic applications. Comput Theor Chem 1204:113373

    CAS  Google Scholar 

  32. Kumari N et al (2020) Facile synthesis of naphthalene diimide (NDI) derivatives: aggregation-induced emission, photophysical and transport properties. J Mater Sci Mater Electron 31(5):4310–4322

    CAS  Google Scholar 

  33. Bhosale SV, Jani CH, Langford SJ (2008) Chemistry of naphthalene diimides. Chem Soc Rev 37(2):331–342

    CAS  PubMed  Google Scholar 

  34. Kumar VB et al (2021) The photophysical properties of naphthalene bridged disilanes. RSC Adv 11(35):21343–21350

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mukherjee A, Ghosh S (2021) Core-substituted naphthalene-diimides (cNDI) and related derivatives: Versatile scaffold for supramolecular assembly and functional materials. Org Mater (AAM)

  36. Zaier R, Ayachi S (2021) Toward designing new cyclopentadithiophene-naphthalene derivatives based small molecules for organic electronic applications: A theoretical investigation. Mater Today Commun 27:102370

    CAS  Google Scholar 

  37. An JM, Kim SH, Kim D (2020) Recent advances in two-photon absorbing probes based on a functionalized dipolar naphthalene platform. Org Biomol Chem 18(23):4288–4297

    CAS  Google Scholar 

  38. Ayranci E, Duman O (2010) Structural effects on the interactions of benzene and naphthalene sulfonates with activated carbon cloth during adsorption from aqueous solutions. Chem Eng J 156(1):70–76

    CAS  Google Scholar 

  39. Hashemi SH, Kaykhaii M (2017) Developments in methods of analysis for naphthalene sulfonates. Crit Rev Anal Chem 47(2):127–137

    CAS  PubMed  Google Scholar 

  40. Kameda T, Saito M, Umetsu Y (2006) Preparation and characterisation of Mg–Al layered double hydroxides intercalated with 2-naphthalene sulphonate and 2, 6-naphthalene disulphonate. Mater Trans 47(3):923–930

    CAS  Google Scholar 

  41. Jia M et al (2021) Investigation on the construction, photophysical properties and dyeing mechanism of 1, 8-naphthalimide-based fluorescent dyes suitable for dyeing wool fibers in supercritical CO2. Dyes Pigm 190:109343

    CAS  Google Scholar 

  42. Qian X et al (2010) “Alive” dyes as fluorescent sensors: fluorophore, mechanism, receptor and images in living cells. Chem Commun 46(35):6418–6436

    CAS  Google Scholar 

  43. Bekere L et al (2013) Synthesis and spectroscopic properties of 4-amino-1, 8-naphthalimide derivatives involving the carboxylic group: a new molecular probe for ZnO nanoparticles with unusual fluorescence features. Beilstein J Org Chem 9(1):1311–1318

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Belova A et al (2021) Solvent-controlled intramolecular excimer emission from organosilicon derivatives of naphthalene. Tetrahedron 93:132287

    CAS  Google Scholar 

  45. Erdemir S, Kocyigit O (2016) Anthracene excimer-based “turn on” fluorescent sensor for Cr3+ and Fe3+ ions: Its application to living cells. Talanta 158:63–69

    CAS  PubMed  Google Scholar 

  46. Cao J et al (2016) A ternary sensor system based on pyrene derivative-SDS assemblies-Cu2+ displaying dual responsive signals for fast detection of arginine and lysine in aqueous solution. J Photochem Photobiol A 314:66–74

    CAS  Google Scholar 

  47. Zhu Z, Li W, Yang C (2016) Switching monomer/excimer ratiometric fluorescence to time-resolved excimer probe for DNA detection: A simple strategy to enhance the sensitivity. Sens Actuators B Chem 224:31–36

    CAS  Google Scholar 

  48. Zhang Q et al (2015) Cyclodextrin supramolecular inclusion-enhanced pyrene excimer switching for time-resolved fluorescence detection of biothiols in serum. Biosens Bioelectron 68:253–258

    CAS  PubMed  Google Scholar 

  49. Yang M et al (2016) Polycation-induced benzoperylene probe excimer formation and the ratiometric detection of heparin and heparinase. Biosens Bioelectron 75:404–410

    CAS  PubMed  Google Scholar 

  50. Long S et al (2019) Rapid identification of bacteria by membrane-responsive aggregation of a pyrene derivative. ACS sensors 4(2):281–285

    CAS  PubMed  Google Scholar 

  51. Vollbrecht J (2018) Excimers in organic electronics. New J Chem 42(14):11249–11254

    CAS  Google Scholar 

  52. Thirion D et al (2012) Intramolecular excimer emission as a blue light source in fluorescent organic light emitting diodes: a promising molecular design. J Mater Chem 22(15):7149–7157

    CAS  Google Scholar 

  53. Suwara J et al (2020) Highly fluorescent distyrylnaphthalene derivatives as a tool for visualization of cellular membranes. Materials 13. https://doi.org/10.3390/ma13040951

  54. Aladekomo J, Birks J (1965) ‘Excimer’ fluorescence VII. Spectral studies of naphthalene and its derivatives. Proc R Soc London Ser A Math Phys Sci 284(1399):551–565

    CAS  Google Scholar 

  55. Seixas de Melo J et al (2003) Energetics and dynamics of naphthalene polyaminic derivatives. Influence of structural design in the balance static vs dynamic excimer formation. J Phys Chem A 107(51):11307–11318

    CAS  Google Scholar 

  56. Adhikari S et al (2015) Sn(II) induced concentration dependent dynamic to static excimer conversion of a conjugated naphthalene derivative. Dalton Trans 44(32):14388–14393

    CAS  PubMed  Google Scholar 

  57. Hoche J et al (2017) The mechanism of excimer formation: an experimental and theoretical study on the pyrene dimer. Phys Chem Chem Phys 19(36):25002–25015

    CAS  PubMed  Google Scholar 

  58. Narayan B et al (2018) The effect of regioisomerism on the photophysical properties of alkylated-naphthalene liquids. Phys Chem Chem Phys 20(5):2970–2975

    CAS  PubMed  Google Scholar 

  59. Birajdar SS et al (2021) Conjoint use of naphthalene diimide and fullerene derivatives to generate organic semiconductors for n–type organic thin film transistors. ChemistryOpen 10(4):414–420

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jang E et al (2018) Investigation of photophysical properties of 1, 8-naphthalimides with an extended conjugation on naphthalene moiety via Suzuki coupling reaction. J Photochem Photobiol A 364:145–150

    CAS  Google Scholar 

  61. Feng J et al (2011) Naphthalene-based fluorophores: Synthesis characterization, and photophysical properties. J Lumin 131(12):2775–2783

    CAS  Google Scholar 

  62. Maeda H, Maeda T, Mizuno K (2012) Absorption and fluorescence spectroscopic properties of 1-and 1, 4-silyl-substituted naphthalene derivatives. Molecules 17(5):5108–5125

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Dutta GK et al (2019) Aggregation behavior in naphthalene-appended diketopyrrolopyrrole derivatives and its gas adsorption impact on surface potential. J Mater Chem C 7(32):9954–9965

    CAS  Google Scholar 

  64. Panahi F et al (2021) A novel donor–π–acceptor halochromic 2, 6-distyrylnaphthalene chromophore: Synthesis, photophysical properties and DFT studies. RSC Adv 11(1):168–176

    CAS  Google Scholar 

  65. Krishnaveni K et al (2021) Selective anions mediated fluorescence “turn-on”, aggregation induced emission (AIE) and lysozyme targeting properties of pyrene-naphthalene sulphonyl conjugate. Spectrochim Acta Part A Mol Biomol Spectrosc 252:119537

    CAS  Google Scholar 

  66. Yang F et al (2012) Structure–property relationship of naphthalene based donor–π–acceptor organic dyes for dye-sensitized solar cells: remarkable improvement of open-circuit photovoltage. J Mater Chem 22(42):22550–22557

    CAS  Google Scholar 

  67. Chen W et al (2019) Facile synthesis of simple arylamine-substituted naphthalene derivatives as hole-transporting materials for efficient and stable perovskite solar cells. J Power Sources 425:87–93

    CAS  Google Scholar 

  68. Hachiya S, Asai K, Konishi G-I (2013) Unique solvent-dependent fluorescence of nitro-group-containing naphthalene derivatives with weak donor–strong acceptor system. Tetrahedron Lett 54(14):1839–1841

    CAS  Google Scholar 

  69. Gurusamy S et al (2021) Multiple target detection and binding properties of naphthalene-derived Schiff-base chemosensor. J Mol Liq 325:115190

    CAS  Google Scholar 

  70. Zhang W et al (2018) A novel naphthalene-based fluorescent probe for highly selective detection of cysteine with a large Stokes shift and its application in bioimaging. New J Chem 42(22):18109–18116

    CAS  Google Scholar 

  71. Al-Wattar A, Lumb M (1971) On the interpretation of iso-emissive points. Chem Phys Lett 8(4):331–336

    CAS  Google Scholar 

  72. Wang L et al (2021) Hg2+-induced excimer of a naphthalene-based fluorescent probe for recognition I–. Inorg Chem Commun 129:108662

    CAS  Google Scholar 

  73. Banerjee A et al (2012) Nickel (II)-induced excimer formation of a naphthalene-based fluorescent probe for living cell imaging. Inorg Chem 51(10):5699–5704

    CAS  PubMed  Google Scholar 

  74. Mallick S, Pal K, Koner AL (2016) Probing microenvironment of micelle and albumin using diethyl 6-(dimethylamino) naphthalene-2, 3-dicarboxylate: An electroneutral solvatochromic fluorescent probe. J Colloid Interface Sci 467:81–89

    CAS  PubMed  Google Scholar 

  75. Pandeeswar M, Govindaraju T (2013) Green-fluorescent naphthalene diimide: conducting layered hierarchical 2D nanosheets and reversible probe for detection of aromatic solvents. RSC Adv 3(29):11459–11462

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Concept and design of this article is collective contribution of all authors. They all read and approve the final manuscript of this research article. Ruqaya Irshad along with Sadia Asim plays a vital role in collecting data regarding the luminescent properties of naphthalene and its derivatives and their applications as probe. Fluorescent applications of naphthalene derivatives in imaging purpose was collected by Yusra Arooj and Asim Mansha. The first draf of manuscript was written by Ruqaya Irshad which was later refined by Sadia Asim, Yusra Arooj and Asim Mansha.

Corresponding author

Correspondence to Sadia Asim.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Yes, I got permission.

Consent for Publication

Yes, you can publish it.

Conflict of Interest

The review article entitled “Naphthalene and its Derivatives: Efficient Fluorescence Probes for Detecting and Imaging Purposes.” is carried out with the financial help from Higher Education Commission, Pakistan (Project number: 9922). All the authors involved in the write up of this article do not have any conflict of Interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irshad, R., Asim, S., Mansha, A. et al. Naphthalene and its Derivatives: Efficient Fluorescence Probes for Detecting and Imaging Purposes. J Fluoresc 33, 1273–1303 (2023). https://doi.org/10.1007/s10895-023-03153-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03153-y

Keywords

Navigation